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ABSTRACT
Aiming to alleviate data sparsity and cold-start problems of tra-

ditional recommender systems, incorporating knowledge graphs
(KGs) to supplement auxiliary information has recently gained con-
siderable attention. Via unifying the KG with user-item interactions
into a tripartite graph, recent works explore the graph topologies
to learn the low-dimensional representations of users and items
with rich semantics. These real-world tripartite graphs are usu-
ally scale-free, however, the intrinsic hierarchical graph structures
of which are underemphasized in existing works, consequently,
leading to suboptimal recommendation performance. To address
this issue and provide more accurate recommendation, we pro-
pose a knowledge-aware recommendation method with Lorentz
model of the hyperbolic geometry, namely Lorentzian Knowledge-
enhanced Graph convolutional networks for Recommendation (LKGR).
LKGR facilitates better modeling of scale-free tripartite graphs after
the data unification. Specifically, we employ different information
propagation strategies in the hyperbolic space to explicitly en-
code heterogeneous information from historical interactions and
KGs. Additionally, our proposed knowledge-aware attention mech-
anism enables the model to automatically measure the information
contribution, producing the coherent information aggregation in
the hyperbolic space. Extensive experiments on three real-world
benchmarks demonstrate that LKGR outperforms state-of-the-art
methods by 3.6-15.3% of Recall@20 on Top-K recommendation.
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• Information systems→ Recommender systems.
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(a) Benchmarks: MovieLens-20M and  Dianping-Food.
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Figure 1: (a) Degree distribution of two real benchmarks. (b)
Distance comparison in Euclidean and hyperbolic spaces.

1 INTRODUCTION
To alleviate the data sparsity and cold-start problems in tradi-

tional recommender systems [12, 16, 26, 32, 34, 44], incorporating
knowledge graphs (KGs) into the recommender systems as side in-
formation has attracted growing attention in recent years [35–39].
A KG is a heterogeneous graph, where nodes represent entities
(i.e., products or items, as well as related attributes and proper-
ties) and edges represent mutual relations between entities. Instead
of relying on user-item historical records only, recommender sys-
tems (RS) extracting rich relational information in KGs can well
compensate for the sparsity. Recently, several works [35–39] de-
velop graph convolutional networks (GCNs) in recommendation,
thanks to their capability of modeling complex data dependency
into the graph format and summarizing the semantic information
behind the topology.

Major motivation. These GCN-based models for knowledge-
aware recommendation [35–39] usually unify the historical user-
item interactions with KGs into the tripartite graphs, as shown in
Figure 2(a). Then they learn the latent representations of users and
items to estimate their matching probabilities in the Euclidean space.
However, after the data unification, these tripartite graphs present
the scale-free (hierarchical) graph characteristic, which is ignored
by existing works [35–39]. We analyze the real-world benchmarks
that are widely studied in these works and show the degree distribu-
tions of two large datasets in Figure 1(a). These two representative
benchmarks are used to recommend movies1 and restaurants2 (de-
tails are in Section 4.1). We observe that these graphs approximate
the power-law distribution. According to Bourgain’s theorem [23],
Euclidean space is however unable to obtain comparably low distor-
tion for tree-like (power-law distributed) data [31]. Consequently,
traditional graph embedding in the Euclidean space may not effec-
tively capture the intrinsic hierarchical structures of these scale-free

1MovieLens-20M: https://grouplens.org/datasets/movielens/
2Meituan-Dianping: https://www.dianping.com/
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graphs, which leads to the high distortion of node embeddings and
ultimately suppresses the recommendation performance [2, 17, 28].

To address this problem, we model these scale-free graphs with
Lorentz model of the hyperbolic geometry for knowledge-aware rec-
ommendation. We propose an end-to-end model, namely Lorentzian
Knowledge-enhanced Graph convolutional networks for Recommen-
dation (LKGR). Generally, LKGR learns better representations for
users, items, and KG entities for recommendation. Concretely:
• LKGR projects node representations onto the Lorentzian mani-
fold, i.e., one specific Riemannian manifold. It lives in the hyper-
bolic space, i.e., a continuous tree space with exponential volume
growth property, producing less distortion for scale-free data
with intrinsic hierarchical structures [2, 17, 28, 41]. As shown in
Figure 1(b), in the hyperbolic space, graph nodes that are closer
to the graph center show a smaller distance, while nodes near
the graph boundary present a larger distance. This exponentially-
evolved distance measurement actually fits well with the tree-like
graph structure, where nodes with small degrees can be viewed
as leaves on the boundary, and nodes with large degrees are like
roots located in the central positions. On the contrary, Euclidean
space embeddings are not position-sensitive and thus may not
capture the latent information of the graph hierarchy.
• At information propagation stage, unlike previous work [36, 37]
mainly focusing onmining KGs, LKGR summarizes the interactive
signals from the user-item interactions and extracts informative
knowledge from KGs simultaneously. Then we detach these two
heterogeneous information from each other to update the node
embeddings accordingly. This is main because of the heterogene-
ity of graph nodes under the recommendation scenarios, which
is also different from most previous works that conduct undiffer-
entiated convolutional operations to all nodes. These interactive
signals are vital that directly reveal the user preferences and item
targeting customers; along with the information extracted from
KGs, LKGR further enriches the embeddings of users and items
with diverse information components.
• We propose Lorentzian Knowledge-aware Attention Mechanism
by considering the local graph structures on the Lorentzian man-
ifold. LKGR with our proposed attention mechanism can well
weigh the relative importance of neighboring information and
selectively propagate information on the associated manifold. In
addition, LKGR is equipped with high-order information propa-
gation techniques in the hyperbolic space, which enables it to be
extensible for different recommendation benchmarks.
LKGR learns the hierarchical structures of scale-free graphs with

the hyperbolic geometry, and coherently summarizes interactive
signals and knowledge associations into the low-dimensional em-
beddings. We extensively evaluate LKGR in three real-world sce-
narios of book, movie, and restaurant recommendation, compared
to recent state-of-the-art methods. Experimental results not only
prove the effectiveness of all proposed model components, but also
demonstrate the superiority of LKGR over compelling baselines: we
achieve the improved performance by 3.61-15.32% of Recall metric
for Top-20 recommendation.

Organization. We define the problem in Section 2 and present
the detailed methodology of LKGR model in Section 3. In Section 4,

we then report the experimental results. Finally, we review the
related works in Section 5 and conclude the paper in Section 6.

2 PROBLEM AND MOTIVATION
2.1 Problem Formulation

A KG is formally defined as a set of the knowledge triplets:
{(𝑒1, 𝑟 , 𝑒2) |𝑒1, 𝑒2 ∈ E, 𝑟 ∈ R}, denoting that relation 𝑟 connects en-
tity 𝑒1 and 𝑒2. E and R represent the set of entities and relations.
The KG is used to provide external knowledge for items, e.g., (The
Godfather, ActedBy, Marlon Brando). User-item interactions can be
similarly represented as: {(𝑢, 𝑟∗, 𝑖) |𝑢 ∈ U, 𝑖 ∈ I}.U and I denote
the set of users and items, respectively, and 𝑟∗ generalizes all inter-
action types, e,g., browse, click, or purchase, as one relation between
𝑢 and 𝑖 . The user-item interaction matrix 𝒀 ∈ R |U |×|I | is defined
according to user-item interaction, where 𝑦𝑢,𝑖 = 1 indicates there is
an observed interaction, otherwise 𝑦𝑢,𝑖 = 0. Moreover, each item
can be matched with an entity in the KG to elucidate alignments
between items and entities [38, 39]. Unifying user behaviors and
item knowledge into the Unified Knowledge Graph (UKG), which es-
sentially is a tripartite graph and can be defined as G = {(ℎ, 𝑟, 𝑡) |ℎ, 𝑡
∈ E ′, 𝑟 ∈ R ′} where E ′ = E ∪ U and R ′ = R ∪{𝑟∗}. For example,
the UKG shown in Figure 2(a) unifies various relations as well as
users, items, and entities in a graph for movie recommendation.

Notations. In this paper, we use the bold lowercase characters,
bold uppercase characters and calligraphy characters to denote the
vectors, matrices and sets, respectively. Non-bold characters are
used to denote scalars or graph nodes.

Task description. Given the UKG, the recommendation task
studied in this paper is to train a RSmodel estimating the probability
𝑦𝑢,𝑖 that user 𝑢 may adopt item 𝑖 .

3 PROPOSED LKGR APPROACH
3.1 Hyperbolic Geometry Preliminaries

Hyperbolic geometry is a non-Euclidean geometry with a con-
stant negative curvature measuring how a geometric object deviates
from a flat plane [30]. In this paper, we adopt the Lorentz model
that well describes hyperbolic geometry, for its unique simplicity
and numerical stability [1, 18, 24, 27].

Lorentzianmanifold and tangent space. Let ⟨., .⟩H: R𝑑 × R𝑑
→R represent the Lorentzian inner product in the hyperbolic space:

⟨𝒙,𝒚⟩H = −𝑥0𝑦0 + 𝑥1𝑦1 + · · · + 𝑥𝑑−1𝑦𝑑−1 . (1)
For ease of presentation, the 𝑑-dimensional Lorentzian manifold

is denoted by H𝑑,𝑐 with the negative curvature −1/𝑐 , and the Eu-
clidean tangent space with 𝑑 dimensions centered at vector 𝒙 ∈
H𝑑,𝑐 is denoted by T𝑑,𝑐𝒙 . T𝑑,𝑐𝒙 is a local, first-order approximation
of the Lorentzian manifold at 𝒙 , which is useful to perform graph
convolutional operations in the hyperbolic space [1].

Exponential and logarithmicmappings.Hyperbolic and tan-
gent space can be bridged by exponential and logarithmic mappings.
Given 𝒙 ,𝒚 ∈ H𝑑,𝑐 (𝒙 ≠𝒚), 𝒛 ∈ T𝑑,𝑐𝒙 (𝒛 ≠ 0), the exponential mapping∏𝑒𝑥𝑝,𝑐

𝒙 (𝒛): T𝑑,𝑐𝒙 →H𝑑,𝑐 , maps 𝒛 to the hyperbolic space; the reverse
logarithmic mapping projects vectors back to the tangent space
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Figure 2: (a) The tripartite graph modeling users, items and KG entities. (b) Illustration of the proposed LKGR model.

centered at 𝒙 , where | |𝒛 | |H =
√
⟨𝒛, 𝒛⟩H is the norm of 𝒛:∏𝑒𝑥𝑝,𝑐

𝒙 (𝒛) = cosh( | |𝒛 | |H√
𝑐
)𝒙 +
√
𝑐 sinh( | |𝒛 | |H√

𝑐
) 𝒛

| |𝒛 | |H
,

∏𝑙𝑜𝑔,𝑐
𝒙 (𝒚) =

√
𝑐 arcosh(−

⟨𝒙,𝒚⟩H
𝑐
) ·

𝒚 + 1
𝑐 ⟨𝒙,𝒚⟩H 𝒙

| |𝒚 + 1
𝑐 ⟨𝒙,𝒚⟩H 𝒙 | |H

.

(2)

3.2 LKGR Model Overview
In the following content, we introduce the proposed Lorentzian

Knowledge-enhanced Graph Convolutional Networks (LKGR) in
detail. Figure 2(b) illustrates the framework of the LKGR model.
Generally, it consists of three components:
• Encoding Layer. In practice, input embeddings may live in the
Euclidean space or hyperbolic space. If they are in the Euclidean
space, Encoding Layer first projects them to the hyperbolic space
to make sure they are on the Lorentzian manifold.
• Attentive Lorentzian Convolutional Layer. Aiming to accu-
rately profile the latent user-item representations, the Lorentzian
Convolutional Layer respectively updates their embeddings based
on their sampled ego-networks, e.g., Figures 2(b) (unsampled
nodes are colored white). In the hyperbolic space, users and
items propagate interactive signals back and forth, which actu-
ally simulates the collaborative filtering effect. To automatically
learn the relative importance of information from the KG, we
design Lorentzian Knowledge-aware Attention Mechanism, which
enables the selective and biased information aggregation in the
hyperbolic space. Furthermore, by stacking multiple attentive
Lorentzian Convolutional Layers, LKGR can explicitly explore the
high-order KG subgraphs to further extract distant knowledge.
• Prediction Layer. To achieve the efficient estimation in the
matching stage, our Prediction Layer directly collects the learned
representations of users and items and outputs the matching
score, by conducting the inner product in the hyperbolic space.

3.3 Encoding Layer
If input embeddings are in the Euclidean space, before inputting

to the following layers, we first need to explicitly encode the Eu-
clidean input onto the Lorentzian manifold. Let 𝒙E ∈ R𝑑−1 and

𝒙H ∈ H𝑑 denote Euclidean inputs and the transformed hyperbolic
feature embedding, respectively. 𝒙H can be encoded as follows:

𝒙H =
∏𝑒𝑥𝑝,𝑐

𝒐 ( [0, 𝒙E]) =
[√

𝑐 cosh( | |𝒙E | |2√
𝑐
),
√
𝑐 sinh( | |𝒙E | |2√

𝑐
) 𝒙E
| |𝒙E | |2

]
,

(3)
where (0, 𝒙E) is a𝑑-dimensional vector in (Euclidean) tangent space
and vector 𝒐 = {

√
𝑐, 0, . . . , 0} ∈ H𝑑,𝑐 denotes the origin in H𝑑,𝑐 . 𝒐 is

used as a reference vector to perform tangent space operations. In
the context of LKGR, we set the curvature −1/𝑐 as a trainable vari-
able, which dynamically measures how hierarchical the embedding
space is [1]. Unless otherwise specified, we use 𝒙 to denote 𝒙

H
in

the following sections.
Encoding Layer enables our model to be compatible with up-

stream Euclidean inputs. To evaluate the holistic performance, e.g.,
recommendation accuracy, training time, of all proposed LKGR
modules, in this paper, we initialize the node embeddings in the
Euclidean space. Experimental details can be found in Section 4.3.

3.4 Attentive Lorentzian Convolutional Layer
We describe a single layer on Lorentzian Knowledge-aware At-

tention, information propagation, and neighbor aggregation.

3.4.1 Lorentzian Knowledge-aware Attention. Our proposed atten-
tion mechanism considers the local structures of knowledge triplets
on the Lorentzian manifold. We first compute the attentive weight
𝜋 (ℎ, 𝑟, 𝑡) of an edge between entity ℎ and entity 𝑡 connected by
relation 𝑟 :

𝜋 (ℎ, 𝑟, 𝑡) = ∏𝑙𝑜𝑔,𝑐
𝒐 (𝒉)𝑇𝑾𝑟

∏𝑙𝑜𝑔,𝑐
𝒐 (𝒕), (4)

which is further normalized, denoted by 𝜋 (ℎ, 𝑟, 𝑡), across all edges
connected with ℎ by adopting the softmax function:

𝜋 (ℎ, 𝑟, 𝑡) = exp(𝜋 (ℎ, 𝑟, 𝑡))∑
𝑡 ′∈N(ℎ) exp(𝜋 (ℎ, 𝑟, 𝑡 ′))

. (5)

Our attention mechanism depends on the node embedding 𝒉, 𝒕
and weight matrix𝑾𝑟 , enabling LKGR to automatically measure
different contributions of knowledge-based neighbors. Based on
these learned weights, neighboring information can be selectively
propagated and aggregated.
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3.4.2 Lorentzian Information Propagation. To propagate the neigh-
bor information on the Lorentzianmanifold, we compute the Lorentzian
linear combination of neighborhoods for users and items, respec-
tively. As shown in Figure 2(a), since users only interact with items,
the embedding of user 𝑢’s ego-network (i.e., N(𝑢)) representing
𝑢’s historical interactive information, is defined in Equation 6. Here
𝜋 (𝑢, 𝑟∗, 𝑖) is the normalized weight of edge (𝑢, 𝑟∗, 𝑖).

𝒔N(𝑢) =
∏𝑒𝑥𝑝,𝑐

𝒖

( ∑
𝑖∈N(𝑢)

𝜋 (𝑢, 𝑟∗, 𝑖)
∏𝑙𝑜𝑔,𝑐

𝒖 ( 𝒊)
)
. (6)

Similarly, items connect to users and KG entities; therefore, item 𝑖

collectively receives the interactive signals from the user neighbors
(i.e.,N𝑈 𝐼 (𝑖)), and knowledge from the KG side (i.e.,N𝐾𝐺 (𝑖)). Let 𝑢
∈ N𝑈 𝐼 (𝑖) and 𝑒 ∈ N𝐾𝐺 (𝑖) denote a user and an entity connecting
with item 𝑖 by relation 𝑟∗ and 𝑟 . LKGR collectively summarizes the
interactive information and knowledge backgrounds for item 𝑖 as:

𝒔N(𝑖) =
∏𝑒𝑥𝑝,𝑐

𝒊

( ∑
𝑢∈N𝑈 𝐼 (𝑖)

𝜋 (𝑖, 𝑟∗, 𝑢)
∏𝑙𝑜𝑔,𝑐

𝒊 (𝒖) +
∑

𝑒∈N𝐾𝐺 (𝑖)
𝜋 (𝑖, 𝑟 , 𝑒)

∏𝑙𝑜𝑔,𝑐

𝒊 (𝒆)
)
.

(7)
We implement a fixed-size random neighbor sampling instead of

using full node neighbors, which is particularly useful for web-scale
recommender systems [10, 42].

3.4.3 Lorentzian Neighbor Aggregation. After obtaining the prop-
agated neighbor information (i.e., 𝒔N(𝑢) and 𝒔N(𝑖) ), the next step
is to perform Lorentzian neighbor aggregation and update the em-
beddings for users and items. Generally, for node embedding 𝒙 and
its neighbor representation 𝒔N(𝑥) , we use function 𝑓 (𝒙, 𝒔N(𝑥) ):
H𝑑 × H𝑑 → H𝑑 to update the representation for node 𝑥 , i.e., 𝒙
= 𝑓 (𝒙, 𝒔N(𝑥) ). In this paper, we utilize three types of Lorentzian
aggregators to implement 𝑓 (·) as:
• Sum Aggregator [15] takes the summation of two inputs and
conducts a nonlinear transformation, followed by a nonlinear
activation on the Lorentzian manifold:

𝑓𝑠𝑢𝑚 = 𝜎⊗
𝑐
(
𝑨 ⊙𝑐 (𝒙 ⊕𝑐 𝒔N(𝑥) ) ⊕𝑐 𝒃

)
, (8)

where 𝑨 and 𝒃 are the trainable weights and bias defined in the
associated tangent space. All Lorentzian basic operations e.g., ⊙𝑐 ,
will be introduced later.
• Concatenate Aggregator [10] concatenates two vectors, followed
by a nonlinear transformation and activation as:

𝑓𝑐𝑜𝑛𝑐𝑎𝑡 = 𝜎⊗
𝑐
(
𝑨 ⊙𝑐 (𝒙 ⊛𝑐 𝒔N(𝑥) ) ⊕𝑐 𝒃

)
, (9)

where ⊛𝑐 denotes the operation:

𝒂 ⊛𝑐 𝒃 =
∏𝑒𝑥𝑝,𝑐
𝑜

(∏𝑙𝑜𝑔,𝑐
𝑜 (𝒂)

������∏𝑙𝑜𝑔,𝑐
𝑜 (𝒃)

)
. (10)

• Neighbor Aggregator [33] directly updates the output representa-
tion with the input 𝒔N(𝑥) :

𝑓𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 = 𝜎⊗
𝑐
(
𝑨 ⊙𝑐 𝒔N(𝑥) ⊕𝑐 𝒃

)
. (11)

Lorentzian linear transformation and activation. Given 𝑨
and 𝒃 , Lorentzian linear transformation of the hyperbolic geometry
can be well extended from the Euclidean geometry as [1, 7]:

𝑨 ⊙𝑐 𝒙 =
∏𝑒𝑥𝑝,𝑐

𝒐 (𝑨∏𝑙𝑜𝑔,𝑐
𝑜 (𝒙)),

𝒙 ⊕𝑐 𝒃 =
∏𝑒𝑥𝑝,𝑐

𝒙

(
𝒃 − 𝛾

(∏𝑙𝑜𝑔,𝑐
𝒐 (𝒙) +

∏𝑙𝑜𝑔,𝑐
𝒙 (𝒐)

) )
,

(12)

where 𝛾 =

〈∏𝑙𝑜𝑔,𝑐
𝒐 (𝒙),𝒃

〉
H

𝑐 arcosh(− ⟨𝒐,𝒙⟩H
𝑐
)2
. The hyperbolic activation 𝜎 is defined:

𝜎⊗
𝑐

=
∏𝑒𝑥𝑝,𝑐

𝒐 (𝜎 (
∏𝑙𝑜𝑔,𝑐

𝒐 (𝒙))) . (13)

Algorithm 1: LKGR algorithm
Input: UKG G; trainable parameters Θ: 𝑐 , {𝒖 }𝑢∈U , {𝒊}𝑖∈I , {𝒆 }𝑒∈E ,

{𝑾𝑟 }𝑟∈R′ , {𝑨𝑗 ,𝒃 𝑗 } 𝑗=0; hyper-parameters: 𝑑 , 𝐿, [, _, 𝑓 ( ·) .
Output: Prediction function F(𝑢, 𝑖 |Θ, G)

1 while LKGR not converge do
2 for (𝑢, 𝑖) ∈ G that 𝑦𝑢,𝑖 = 1 do
3 N(𝑢),N𝑈 𝐼 (𝑖) ← get sampled user-item neighbors for 𝑢, 𝑖 ;
4 𝒔N(𝑢) , 𝒔N𝑈 𝐼 (𝑖 )←propagate interactive information;
5 𝒖 ← 𝑓 (𝒖, 𝒔N(𝑢) ) ;
6 N𝐾𝐺 (𝑖) ← get sampled 𝐿-hops of KG neighbors for 𝑖;
7 for 𝑙 = 𝐿, · · · , 1 do
8 for 𝑒 ∈ (𝑙-1)-hop neighbor of 𝑖 in N𝐾𝐺 (𝑖) do
9 N(𝑒) ← 𝑒’s entity neighbors in N𝐾𝐺 (𝑖) (𝑙 ) ;

10 𝒔N(𝑒 ) ← propagate KG information;
11 if 𝑙 = 1 then
12 𝒔N(𝑒 ) ← propagate interactive information

and KG backgrounds to 𝑒 ;
13 𝒆 ← 𝑓 (𝒆, 𝒔N(𝑒 ) ) ;

14 �̂�𝑢,𝑖 ← compute estimated matching score;
15 L ← compute loss and optimize LKGR model;

16 return F.

3.4.4 High-order Knowledge Extraction. To further explore the
high-order information in KGs and propagate distant knowledge
to items, as shown in Figure 2(b), we can explore the multi-hop
subgraphs and stack more propagation layers in LKGR accordingly.
Concretely, we first conduct 𝑙-hop neighbor sampling for item 𝑖

to reach its high-order subgraph N𝐾𝐺 (𝑖) in KG, where we use
N𝐾𝐺 (𝑖) (𝑙) to represent 𝑖’s 𝑙-hop neighbors. Then we propagate
knowledge from the 𝑙-hop subgraph and iteratively aggregate to
the centric node 𝑖 . For example, entity 𝑒 is the 𝑙-hop neighbor of
item 𝑖 in KG, i.e., 𝑒 ∈ N𝐾𝐺 (𝑖) (𝑙) . Then in the 𝑙-hop of propagation,
we formulate 𝑒’ neighbor representation by exploring 𝑒’s adjacent
subgraph N𝐾𝐺 (𝑖) (𝑙+1) as follows:
𝒔N(𝑒), 𝑒∈N𝐾𝐺 (𝑖) (𝑙 ) =

∏𝑒𝑥𝑝,𝑐
𝒆

( ∑
𝑒′∈N𝐾𝐺 (𝑖) (𝑙+1)

𝜋 (𝑒, 𝑟 ′, 𝑒 ′)
∏𝑙𝑜𝑔,𝑐

𝒆 (𝒆′)
)
,

(14)
where 𝒆′, the embedding of entity 𝑒 ′ ∈ N𝐾𝐺 (𝑖) (𝑙+1) , and coefficient
𝜋 (𝑒, 𝑟 ′, 𝑒 ′) are updated based on the previous step computation.

Specifically, high-order propagation relies on the neighbor sam-
pling to generate a multi-hop sub-graph where edges live in the
consecutive hops. As illustrated by the pseudocodes in Algorithm 1,
the 𝑙-hop KG information can be iteratively propagated from 𝑙 = 𝐿

to 𝑙 = 1 via message passing along these edges (lines 7-13). At the
1-hop subgraph, the condensed KG information and user neighbor
information collectively enriches 𝑖’s representation (lines 11-12).
Please notice that 0-hop neighbor of item 𝑖 in N𝐾𝐺 (𝑖) is 𝑖 itself
(line 8), so that if 𝑙 = 1, 𝑒 = 𝑖 and 𝒔N(𝑒) = 𝒔N(𝑖) (lines 11-13).

Research Paper  WSDM ’22, Feb. 21–25, 2022, Virtual Event, Tempe, AZ, USA

97



Time complexity analysis. Let 𝑌 denote the number of user-
item interactions. 𝛼 is the average time cost of numerical computa-
tion between Euclidean and hyperbolic spaces. The training time
cost per epoch (iteration) is𝑂

(
𝛼 ·𝑌 ·( |N (𝑢) |+ |N𝑈 𝐼 (𝑖) |+ |N𝐾𝐺 (𝑖) |𝐿) ) .

In this paper, for all benchmarks, the sampling size is no more than
8. Although the theoretical time complexity is exponential to 𝐿, in
our work, 𝐿 ≤ 2. This is because stacking too many propagation
hops incurs performance detriment, the main cause of which lies in
the well-known over-smoothing [19, 21] problem. As we will show
in Section 4.5, compared to recent state-of-the-art models stacking
limited hops (𝐿 ≤ 2), LKGR is comparably efficient in practice.

3.5 Prediction Layer and Model Optimization
3.5.1 Prediction Layer. In traditional embedding-based matching
models, inner product and L2 distance are widely adopted, mainly
because this simple but effective interaction modeling enables ac-
celerated computation on the online matching stage. Therefore, we
use the learned hyperbolic representations of users and items from
the previous layer and take the inner product in the hyperbolic
space to estimate their matching score:

𝑦𝑢,𝑖 = 𝑔(𝒖, 𝒊) =
(∏𝑙𝑜𝑔,𝑐

𝑜 (𝒖)
)𝑇∏𝑙𝑜𝑔,𝑐

𝑜 ( 𝒊) . (15)
During the evaluation stage, items with top scores 𝑦𝑢,𝑖 are se-

lected as recommended items to a given user 𝑢.

3.5.2 Model Optimization. Let S+𝑢 denote the positive interacted
item set of user 𝑢, i.e., 𝑦𝑢,𝑖 = 1, and S−𝑢 represent the corresponding
sampling set of negative items, i.e., 𝑦𝑢,𝑖 = 0. To effectively optimize
LKGR for training, in this paper, we set |S+𝑢 | = |S−𝑢 |. In each iteration
of model training, S+𝑢 and S−𝑢 are updated accordingly. Finally, the
loss function of LKGR is defined as follows:
L =

∑
𝑢∈U

( ∑
𝑖∈S+𝑢

J (𝑦𝑢,𝑖 , 𝑦𝑢,𝑖 ) −
∑
𝑖∈S−𝑢

J (𝑦𝑢,𝑖 , 𝑦𝑢,𝑖 )
)
+ _ | |Θ| |22 . (16)

where J (·) denotes the cross-entropy loss, Θ is the set of trainable
model parameters and embeddings, and | |Θ| |22 is the 𝐿2-regularizer
parameterized by _.

4 EXPERIMENTS
We evaluate LKGR model under the three real-world scenarios,

with the aim of answering the following research questions:
• RQ1. How does LKGR perform compared to state-of-the-art KG-
enhanced recommendation models?
• RQ2. How is the time efficiency of LKGR in model training?
• RQ3. How do proposed model components and different hyper-
parameter settings affect LKGR?

4.1 Datasets
To evaluate the effectiveness of LKGR, we utilize the following

three benchmarks for movie, book, and restaurant recommenda-
tions. In terms of the diversity in domain, size, and sparsity, all these
three datasets are frequently evaluated in recent works [35–37, 39].

Specifically, Book-Crossing3 (Book) is a dataset of book ratings
(ranging from 0 to 10) extracted from the Book-Crossing community.
MovieLens-20M (Movie) is a widely adopted benchmark for movie

3Book-Crossing: http://www2.informatik.uni-freiburg.de/~cziegler/BX/

Table 1: Three datasets used in this paper.

Book Movie Restaurant

# users 17,860 138,159 2,298,698
# items 14,967 16,954 1,362

# interactions 139,746 13,501,622 23,416,418
# entities 77,903 102,569 28,115
# relations 25 32 7
# KG triples 151,500 499,474 160,519

recommendation. It contains approximately 20 million explicit rat-
ings (ranging from 1 to 5) on theMovieLens website. Dianping-Food
(Restaurant) is a commercial dataset from Dianping.com that con-
sists of over 10 million diverse interactions, e.g., clicking, saving,
and purchasing, between about 2 million users and 1 thousand
restaurants. The first two datasets are publicly accessible and the
last one is contributed by Meituan-dianping Inc. [36]. Dataset sta-
tistics are summarized in Table 1.

4.2 Baselines
To demonstrate the effectiveness of the proposed model, we com-

pare LKGR with three types of state-of-the-art recommendation
methods: CF-based methods (BPRMF, NFM), regularization-based
methods (CKE and KGAT), and propagation-based methods (Rip-
pleNet, KGCN, KGNN-LS, CKAN), as follows.
• BPRMF [29] is a representative CF-based method that performs
matrix factorization with implicit feedback, optimized by the
Bayesian Personalized ranking optimization criterion.
• NFM [11] is a state-of-the-art neural factorizationmachinemodel
for recommendation.
• CKE [43] is a classical regularization-based method. CKE learns
semantic embeddings using TransR [22] with structural, textual
and visual information to subsume matrix factorization under a
unified Bayesian framework.
• KGAT [38] is another representative regularization-based model
that collectively refines user and item embeddings via an attentive
embedding propagation layer.We use the pre-trained embeddings
of users and items from BPRMF to initialize the model.
• RippleNet [35] is a recent state-of-the-art propagation-based
model. Aiming at enriching the users’ representations, RippleNet
uses a memory-like network to propagate users’ preferences
towards items by following paths in KGs.
• KGCN [37] is another state-of-the-art propagation-basedmethod
which extends spatial GCN approaches to the KG domain. By
aggregating high-order neighbor information, both structure
information and semantic information of the KG can be learned
to capture users’ potential long-distance interests.
• KGNN-LS [36] is a state-of-the-art propagation-based method
that applies graph neural network architecture to KGs with label
smoothness regularization for recommendation.
• CKAN [39] is the latest state-of-the-art propagation-basedmethod
which employs a heterogeneous propagation strategy to encode
diverse information in KGs for recommendation.
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Table 2: Average results of Top@20 recommendation task. Underline indicates the second-best model performance. Bold de-
notes the empirical improvements against second-best models, and ∗ denotes scenarios where a Wilcoxon signed-rank test
indicates a statistically significant improvement under 95% confidence level between our model and second-best models.

Model Book-Crossing MovieLens-20M Dianping-Food
Recall@20(%) NDCG@20(%) Recall@20(%) NDCG@20(%) Recall@20(%) NDCG@20(%)

BPRMF 4.67 (8.7e-3) 2.80 (4.3e-3) 20.48 (1.6e-2) 15.77 (9.1e-3) 19.90 (3.0e-2) 10.79 (2.0e-2)
NFM 3.93 (2.2e-2) 2.17 (1.5e-2) 19.79 (3.3e-2) 14.28 (1.1e-2) 23.85 (3.9e-2) 12.48 (3.0e-2)
CKE 4.38 (9.6e-3) 2.24 (4.2e-2) 21.52 (1.2e-2) 15.73 (1.3e-2) 22.24 (3.1e-2) 12.09 (1.5e-2)

RippleNet 7.12 (2.1e-2) 5.09 (1.7e-2) 13.74 (2.6e-2) 9.77 (1.7e-2) 21.20 (4.1e-2) 10.99 (2.0e-2)
KGNN-LS 8.51 (2.2e-2) 6.06 (1.7e-2) 20.20 (1.0e-2) 15.49 (1.3e-2) 15.52 (4.9e-2) 7.92 (2.9e-2)
KGCN 7.85 (2.9e-2) 5.93 (2.3e-2) 19.24 (3.2e-2) 13.87 (1.6e-2) 19.03 (3.0e-2) 9.34 (1.5e-2)
KGAT 5.34 (6.1e-3) 3.01 (7.9e-3) 21.80 (7.7e-3) 16.81 (1.1e-2) 15.57 (2.4e-2) 7.67 (1.7e-2)
CKAN 6.19 (1.1e-2) 3.47 (5.3e-3) 17.48 (1.7e-2) 12.48 (1.4e-2) 24.10 (3.9e-2) 13.33 (2.0e-2)

LKGR 9.48∗ (2.3e-2) 6.50∗ (1.6e-2) 25.14∗ (4.1e-2) 18.34∗ (4.7e-2) 24.97∗ (4.4e-2) 10.45 (1.9e-2)
% Improv. 11.40% 7.26% 15.32% 9.10% 3.61% N/A

(a) Book-Crossing (b) MovieLens-20M (c) Dianping-Food

Figure 3: Average results of Recall@K and NDCG@K in Top-K Recommendation.

4.3 Experiment Setup
To evaluate LKGR, we randomly divide each dataset 5 times

into training, evaluation, and test sets with the ratio of 6:2:2. In
the evaluation of Top-K recommendation task, we use the model
learned from the training set to rank K items for each user in
the test set with the highest predicted scores 𝑦𝑖, 𝑗 . We choose two
widely-used evaluation protocols, i.e., Recall@K and NDCG@K.
We optimize all models with Adam optimizer [14] and adopt the
default Xavier initializer [9] to initialize the model parameters.

We implement the LKGR model under Python 3.7 and Pytorch
1.4.0. The experiments are run on a Linux machine with 1 V100
GPU, 4 Intel Xeon CPU (Skylake, IBRS), 16 GB of RAM. For all
the baselines, we follow the official hyper-parameter settings from
original papers or as default in corresponding codes. For meth-
ods lacking recommended settings, we apply a grid search for
hyper-parameters. The learning rate, denoted by [, is tuned within
{10−3, 5 × 10−2, 10−2, 5 × 10−1} and the coefficient of 𝐿2 normaliza-
tion is tuned among {10−6, 10−5, 10−4, 10−3}. The embedding size is
searched in {8, 16, 32, 64, 128}.

4.4 Performance Comparison (RQ1)
4.4.1 Top-K recommendation. We evaluate LKGR on Top-K recom-
mendation task by varying K in {1, 5, 10, 20, 50, 100}. Table 2 reports
Top-20 recommendation results for detailed comparison and analy-
sis and Figure 3 contains the complete performance curves of LKGR
and baselines. From these results, we can observe that:
• The results of Top-20 recommendation demonstrate the improve-
ments of LKGR are statistically stable and significant.We report
the details of Top-20 recommendation of all models in Table 2. For
example, we can observe that LKGR significantly outperforms all
baselines by 11.40% (9.48→8.51), 15.32% (25.14→21.80) and 3.61%
(24.97→24.10) of Recall metric for Top-20 recommendation on
three datasets. As for the NDCG metric, LKGR achieves 7.26%
(6.50→6.06) and 9.10% (18.34→16.81) improvement of NDCG@20
on Book and Movie datasets but does not perform the best on
Restaurant. This shows that LKGR can make good recalling of
Top-20 candidates from the item corpus but may not well capture
the ranking within for this specific dataset, leaving the space of
further optimization. The reported standard deviations of LKGR
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are also comparable with all baselines, showing the stability of
our proposed model. Furthermore, we conduct Wilcoxon signed-
rank tests to verify that the achieved performance improvements
are statistically significant over the second-best recommendation
model under the 95% confidence level.
• As K increases, LKGR consistently performs well on three bench-
marks. Results in Figure 3 demonstrate the effectiveness of LKGR
on improving the performance of the ranking recommendation
task, i.e., Top-K recommendation. This shows that the hyperbolic
geometry does well capture the hierarchical properties of graphs,
meaning that it can preserve the order of users’ preferences to-
wards the items, which benefits the ranking recommendation
task. Furthermore, our discrete information propagation and ag-
gregation strategies for users and items on the Lorentzian mani-
fold are effective. Wewill conduct a more comprehensive ablation
study in the later section, analyzing the contribution of all LKGR
module components to the recommendation performance.

4.5 Time Efficiency Comparison (RQ2)

Model BK MV RT

BPRMF 4.58 109.21 134.97
NFM 26.50 92.52 313.87
CKE 10.15 82.83 98.61

RippleNet 12.46 1,159.32 2,343.93
KGNN-LS 1.62 36.51 81.17
KGCN 4.47 15.27 58.80
KGAT 61.88 333.86 2,254.83
CKAN 3.36 439.23 529.21

LKGR 43.26 250.88 337.10
Training time (s) per epoch 

Movie 

Restaurant 
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(a) Training time cost per epoch (s). (b) Efficiency v.s. accuracy

Figure 4: Model comparison on efficiency and accuracy.

In this section, we study how time efficient our LKGR and base-
lines are. All methods are run on the same aforementioned running
environment, and we use the default hyper-parameters that are
reported in papers or official codes. We use BK, MV, and RT to
denote Book, Movie, Restaurant, and report the results in Figure 4.

We can observe that: (1) as shown in Figure 4(a), compared to
CF-based methods, i.e., BPRMF and NFM, LKGR requires more time
for model training as it needs to explore the KG for information
propagation; (2) compared to the remaining KG-based recommen-
dation models, LKGR requires the analogous time cost of model
training, which may dispel concerns of large computation overhead
in the hyperbolic space. (3) Figure 4(b) visualizes the overall per-
formances in terms of efficiency and accuracy among all models.
As the upper-right corner of the figure means the ideal optimal
performance, LKGR makes an excellent trade-off w.r.t efficiency
and accuracy, especially on Movie and Restaurant datasets.

4.6 Ablation Study of LKGR (RQ3.A)
In this section, we first conduct a comprehensive ablation study

to evaluate the effectiveness of all model components. We use R@20
and N@20 to denote recall@20 and NGCG@20.

Table 3: Ablation study on Top-K recommendation (%).

Dataset w/o IS w/o KE w/o HG w/o LKA LKGR

BK-R@20 4.75 (-49.89%) 5.79 (-38.92%) 8.11 (-14.45%) 8.35 (-11.92%) 9.48
BK-N@20 3.81 (-41.38%) 4.22 (-35.08%) 6.21 (-4.46%) 6.43 (-1.08%) 6.50

MV-R@20 12.45 (-50.48%) 11.73 (-53.34%) 22.19 (-11.73%) 23.94 (-4.77%) 25.14
MV-N@20 8.76 (-52.23%) 7.92 (-56.82%) 15.47 (-15.65%) 17.03 (-7.14%) 18.34

RT-R@20 11.22 (-55.07%) 9.86 (-60.51%) 21.47 (-14.02%) 23.17 (-7.21%) 24.97
RT-N@20 6.54 (-37.42%) 4.74 (-54.64%) 10.41 (-0.38%) 11.03 ( 5.55%) 10.45

Impact of interactive signal propagation. To investigate the
impact of information propagation and aggregation of interactive
signal in LKGR, we set a variant model, denoted by LKGRw/o IS,
which disables the information passing between users and items in
our proposed Equations (6) and (7), so that items receive information
only from KG entities. Based on the results reported in Table 3,
without information propagation between users and items, the
performance of Top-K recommendation drops dramatically, which
demonstrates that learning historical interactive information for
users and items is essential for the performance improvement.

Impact of knowledge extraction. Similarly, we set another
variant LKGRw/o KE to study the influence of knowledge extraction,
by cutting the KG information propagation to items (formulated in
Equations (7) and (14)). As shown in Table 3, purely relying on the
user-item interaction modeling is not enough to boost performance;
thus integrating KGs in recommendation is also very important.

Impact of hyperbolic geometry. We verify the impact of the
hyperbolic geometry by replacing all hyperbolic operations into
Euclidean space and retaining the computation logic of LKGR. We
denote the variant as LKGRw/o HG. As shown in Table 3, even
with adequate information propagation from user-item interactions
and KGs, directly modeling these two data sources in Euclidean
space brings about large performance decay on Top-K recommen-
dation task. For example, by removing the hyperbolic geometry,
LKGRw/o HG produces worse listwise ranking results on all three
benchmarks: 14.45% (8.11→9.48), 11.73% (22.19→25.14), and 14.02%
(21.47→24.97) of Recall for Top-20 recommendation, respectively.
To conclude, with all other essential components, embedding graph
nodes on the Lorentzian manifold is substantial to LKGR, and mod-
eling the scale-free graphs in the hyperbolic space can learn better
representation for recommendation.

Impact of Lorentzian Knowledge-aware Attentionmecha-
nism.We also examine the impact of our proposed attentionmecha-
nism. For comparison, we use a variant that set 𝜋 (ℎ, 𝑟, 𝑡) = 1 tomake
equal contribution for computing 𝒔N(·) , termed by LKGRw/o LKA.
As shown in Table 3, disabling our attention mechanism leads to the
decreased Recall@20 by 11.92% (8.35→9.48), 4.77% (23.94→25.14),
and 7.21% (23.17→24.97). This proves that Lorentzian Knowledge-
aware Attention mechanism is also effective, as it adaptively mea-
sures the importance weights for different nodes on the Lorentzian
manifold and enables more coherent embedding aggregation.

4.7 Effect of Key Hyper-parameters (RQ3.B)
Due to the space limit, we only report the effect of some key

hyper-parameters on the model performance.
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Effect of Lorentzian aggregators. To explore the influence of
aggregating neighbor information on the Lorentzian manifold, we
conduct experiments over different selections of Lorentzian aggre-
gators 𝑓 (·). Based on the Recall and NDCG metrics, we observe
that in Table 4 sum aggregator, i.e., 𝑓𝑠𝑢𝑚 (·), is superior on datasets
of Book and Movie. For the Restaurant dataset, 𝑓𝑐𝑜𝑛𝑐𝑎𝑡 (·) is much
more suitable. This is because sum and concat aggregators are ca-
pable of retaining external neighbor information as well as the
internal information when comparing to 𝑓𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 (·).

Table 4: Top-K recommendation (%) w.r.t different 𝑓 .

𝑓
𝑓𝑠𝑢𝑚 𝑓𝑐𝑜𝑛𝑐𝑎𝑡 𝑓𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟

R@20 N@20 R@20 N@20 R@20 N@20

BK 9.48 6.50 8.19 6.06 8.10 5.84
MV 25.14 18.34 21.42 16.33 20.87 15.23
RT 22.55 9.83 24.97 10.45 21.48 9.29

Effect of KG propagation depth 𝐿. We verify how the propa-
gation depth affects the performance by varying 𝐿 from 0 to 3. Depth
0 means no local information aggregation from KG. As shown in
Table 5, we notice that LKGR achieves the best performance when
𝐿 is 1, 2, and 1 for Book, Movie, and Restaurant. In addition to
the over-smoothing issue that we explain in Section 3.4.4, another
possible reason is: when long-distance propagation introduces dis-
tant knowledge, it may also bring about irrelevant information,
especially when the dataset is large and dense. Thus, preserving
an appropriate depth in the high-order information propagation
enables maximized performance over different recommendation
benchmarks adaptively.

Table 5: Top-K recommendation (%) w.r.t different 𝐿.

𝐿
𝐿 = 0 𝐿 = 1 𝐿 = 2 𝐿 = 3

R@20 N@20 R@20 N@20 R@20 N@20 R@20 N@20

BK 5.79 4.22 9.48 6.50 8.16 5.73 7.43 5.28
MV 22.19 15.47 20.34 15.06 25.14 18.34 21.48 15.17
RT 9.86 4.74 24.97 10.45 22.12 9.47 21.67 9.02

5 RELATEDWORKS
With the rapid development of information networks, study-

ing the ubiquitous graph data has aroused various interests in
both industry and research communities [3–5, 40, 45]. Among
these research topics, KG-enhanced recommender systems receive
much attention recently as they can alleviate data sparsity and
cold-start problems for better recommendation. These methods can
be generally categorized into three branches: (1) path-based, (2)
regularization-based, and (3) propagation-based.

(1) In path-basedmethods, high level meta-paths are extracted
from KGs and then input into the predictive model. Such meta-
paths are usually manually selected or generated, which require
intensive input of domain knowledge and labor resources [6, 13].
Furthermore, it is difficult to optimize the path retrieval for large
and complex graphs, while the selected paths have a great impact

on the final performance. Thus we exclude path-based methods
for model comparison. (2) In regularization-based methods, ad-
ditional loss terms are devised to capture the KG structure and
regularize the model training. For example, KGAT [38] merges
the two tasks of recommendation and KG completion to jointly
train the model. HyperKnow [25] further embeds the joint train-
ing in Poincaré Ball with an adaptive regularization mechanism
to balance two loss terms. However, one deficiency is that these
methods usually rely on the traditional knowledge graph embed-
ding methods to complete the KG training, high-order semantic
information in the KG and user-item interactions is not explicitly
modeled, which may result in suboptimal representation learning
for users and items. (3) Propagation-based methods, performing
iterative message passing with the guidance of the topological struc-
ture in the KGs [35–37, 39], has attracted much attention recently.
With the auxiliary information passed along links in the KGs, the
representations of users and items can be refined to provide more
accurate recommendation service. However, all these methods as-
sume the learning process in the low-dimensional Euclidean space;
nevertheless, because of the intrinsic hierarchical structure of KGs,
whether the Euclidean space is appropriate for all kinds of scenar-
ios is still an open question. Conceptually, LKGR is inspired by
the graph-based message passing mechanism and performs graph
convolutional operations in the hyperbolic space.

6 CONCLUSION AND FUTUREWORKS
In this paper, we propose a KG-enhanced recommendationmodel,

namely LKGR, which learns the embeddings of users and items
as well as the KG entities in the hyperbolic space. We propose a
knowledge-aware attention mechanism on the Lorentzian manifold
to discriminate the contribution of graph node informativeness,
which is followed by multi-layer aggregation for high-order infor-
mation propagation. The experimental results over three real-world
datasets not only validate the performance improvements of LKGR
over recent state-of-the-art solutions, but also demonstrate the
effectiveness of all proposed model components.

As for the future works, there are two potential directions: (1)
since all existing works unify the user-item interactions and the
KG into a static graph, while in practice, users and items usually
contain temporal and dynamic interactions. How to simultaneously
learn the graph structure and temporal information in a unified
framework is a good direction to work on. (2) It is worth exploring
other application scenarios with hyperbolic geometry for perfor-
mance improvement, e.g., information retrieval [46] and language
processing [8, 20], such that hyperbolic modeling can well learn
the embedding of interrelated data with less distortion.
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