
IEEE TRANSACTIONS ON CYBERNETICS 1

Empirical Policy Optimization for
n-Player Markov Games

Yuanheng Zhu , Senior Member, IEEE, Weifan Li, Mengchen Zhao,
Jianye Hao, and Dongbin Zhao , Fellow, IEEE

Abstract—In single-agent Markov decision processes, an agent
can optimize its policy based on the interaction with the envi-
ronment. In multiplayer Markov games (MGs), however, the
interaction is nonstationary due to the behaviors of other players,
so the agent has no fixed optimization objective. The challenge
becomes finding equilibrium policies for all players. In this
research, we treat the evolution of player policies as a dynamical
process and propose a novel learning scheme for Nash equi-
librium. The core is to evolve one’s policy according to not
just its current in-game performance, but an aggregation of its
performance over history. We show that for a variety of MGs,
players in our learning scheme will provably converge to a point
that is an approximation to Nash equilibrium. Combined with
neural networks, we develop an empirical policy optimization
algorithm, which is implemented in a reinforcement-learning
framework and runs in a distributed way, with each player
optimizing its policy based on own observations. We use two
numerical examples to validate the convergence property on
small-scale MGs, and a pong example to show the potential on
large games.

Index Terms—Continuous-time learning dynamics (CTLD),
Markov game (MG), n-player, Nash equilibrium, policy
optimization.

I. INTRODUCTION

MARKOV games (MGs), or stochastic games called
in [1] and [2], are the extension of Markov decision

processes (MDPs) from a single-agent environment to mul-
tiplayer scenarios [3], [4]. Compared to normal-form games
(NFGs) that are stateless and lack the transition of states, MG
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players encounter multiple decision moments in one round,
and at each step have to take into account current game states
to make decisions. Each player aims to maximize its sum
of rewards over time horizon, instead of one-stage payoff in
NFGs. Another famous type of sequential games is extensive-
form games (EFGs) [5], [6], in which the moves of different
players are played in orders, compared to MG players acting
simultaneously. EFGs use a game tree to describe the game
process, and reshaping MGs to EFGs results in exponential
blowup in size with respect to horizon.

In game theory, an important concept is Nash equilibrium, at
which no player has the intention of deviating its strategy with-
out sacrificing the current payoff. However, even for simple
NFGs, computing Nash equilibrium is proved to be PPAD-
complete [7]. Alternatively, learning-based schemes provide
a computational intelligence way to approach equilibria and
have now become appealing to researchers [8], [9].

Deep reinforcement learning (DRL) is a powerful tool in
sequential decision makings [10]–[12], and has also received
attention from the game field. One biggest challenge of DRL
in MGs is the nonstationarity of optimization objectives,
since each player’s payoff is determined by others’ behav-
iors. Recent progress has been made on two-player zero-sum
cases [13]–[15]. For more general n-player games with an
arbitrary number of players, one solution is to convert MGs
to empirical games (seen as NFGs) with every policy being
a strategic option [16]. Then, DRL optimizes the policy of
each player in a game environment against a group of fixed
opponents, whose strategies are mixtures of empirical poli-
cies [17], [18]. However, this approach is computationally
expensive because different players are trained in different
game environments with specific opponents, and the synthesis
of opponent strategies may require additional computational
efforts.

In recent years, reinforcement learning (RL) has promoted
the development of the payoff-based learning scheme in
NFGs [19], [20]. Neglecting what the others’ strategies are,
each player updates its strategy based on the aggregation of
its on-going payoffs. If all players follow the same update rule,
the evolution of their strategies converges to a Nash distribu-
tion with theoretical guarantees. However, in the field of MGs,
this scheme faces obstacles because the strategy becomes a
policy mapping from states to action distributions and the pay-
off is the expectation of sum of future rewards. Motivated
by that, in this article, we propose a continuous-time learn-
ing dynamics (CTLD) for arbitrary n-player MGs. Instead of
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changing the form of games, all players in CTLD interact in
the same game environment and each player evolves its policy
based on the aggregation of its on-going performance. To facil-
itate large-scale applications, an empirical policy optimization
(EPO) algorithm is developed. Player policies are represented
by neural networks (NNs) and the parameters are trained based
on the entire history of experience in an RL way. Compared
to existing methods, our contributions are threefold.

1) The learning scheme runs in a totally distributed way and
players require no other game information but only own
observations. Players do not need to know how many
players are participating and what strategies the others
are playing, so the scheme is applicable to arbitrary n-
player cases.

2) Based on the fixed-point theorem and Lyapunov stability
of dynamical systems, we prove that CTLD converges
to a Nash distribution (an approximation to Nash equi-
librium with arbitrary precision) for a variety of MGs.

3) The simplicity and distributed property makes the learn-
ing scheme compatible with the RL framework for large-
scale games. Experimental results show the efficiency of
EPO in approaching Nash equilibrium.

The remainder of this article is organized as follows.
Sections II and III give the related work and preliminary
knowledge on MGs. Section IV presents our CTLD and
establishes the convergence theorem. Section V extends the
learning scheme to large-scale problems by introducing NNs
and DRL techniques. Section VI conducts experiments to ver-
ify the effectiveness and Section VII draws the conclusion.
Appendixes give the proofs of main theorems and illustrate
details of algorithm implementation.

II. RELATED WORK

Early research on MGs was mainly value-based methods
that aimed to solve Nash values of Bellman-like equations [3].
If the game model is known, one can apply dynamic pro-
gramming (e.g., [21]). Otherwise, one can learn the values
based on online observations like Q-learning [22]. However,
value-based methods rely on the Nash computing (of NFGs) at
every state, and the optimization over joint-action space suf-
fers from combinatorial explosion as the number of players
increases. To reduce joint-action space, some research [23],
[24] adopted the mean-field concept and modeled the interac-
tions among agents by the interaction between an individual
and a virtual agent averaged by others. It inevitably intro-
duces approximation error and deviates the solution from Nash
equilibrium.

Policy optimization, or policy update, is efficient in opti-
mizing agent policies [11], [25]. However, extra efforts are
needed to manipulate the update direction toward the Nash
equilibrium, when applying policy update to multiplayer sce-
narios. As a special case of MGs, two-player zero-sum games
have received much attention. Srinivasan et al. [26] showed
that when directly applying independent policy update rules
in zero-sum sequential games, the regret had no sublinearity
in iterations, in other words, the process may not converge.
Lockhart et al. [14] improved the results by optimizing

one player’s policy against its best response opponent, and
proved when using counterfactual values, the joint poli-
cies converged to a Nash equilibrium in two-player EFGs.
Daskalakis et al. [15] chose a two-timescale learning rates
for the independent learning of min-player and max-player,
which can be seen as a softened “gradient descent versus best
response” scheme.

For more general n-player games, the development is lim-
ited. The recent progress is policy-search response oracles
(PSROs), which was first proposed by Lanctot et al. [16]. The
main idea is to reduce MGs to empirical games, or metagames,
whose policy sets are composed of empirical policies in his-
tory. Each player finds the (approximate) best response to its
opponents’ metastrategies, and the new policies are added into
policy sets for the next iteration. The advantage of PSRO is
that it provides a unified framework for different choices of
metasolvers. Balduzzi et al. [17] proposed to use rectified Nash
mixtures to encourage policy diversity. Muller et al. [18] intro-
duced the α-rank multiagent evaluation metric [27] in PSRO,
and showed promising performance in computing equilibria.
However, PSRO is intensive in computation from two aspects:
1) the policy update of each player is separated in different
game environments with different opponents and 2) addi-
tional computational efforts are required by metasolvers and
empirical payoff evaluation.

In the control field, the multiplayer games mostly con-
sider deterministic policies over continuous actions. The
problem becomes solving the Hamilton–Jacobi–Isaacs equa-
tions for two-player zero-sum games [28]–[30] and the
Hamilton–Jacobi equations for games with more than two
players [31]–[33]. Here, we focus on discrete action sets and
study stochastic policies. The optimization of policies has to
take into account the expectation over all possible trajectories.
There is also considerable research of multiagent RL (MARL)
on partially observable environments [34]–[36]. Unfortunately,
the research pays more attention to multiagent cooperation and
lacks the theoretical guarantee of Nash equilibrium.

III. BACKGROUND AND TERMINOLOGY

An MG played by a finite set of play-
ers N = {1, 2, . . . , n} can be described by
MG = (N ,S, {Ai}i∈N , {Ri}i∈N ,P, γ, ρ0), where S is
the finite set of states, Ai is the finite set of actions for each
player i ∈ N , Ri : S × {Ai} → R is player i’s (bounded)
reward function, P : S × {Ai} × S → [0, 1] is the state
transition function, and γ ∈ (0, 1) is the discounted factor;
ρ0 is the initial state distribution.

In the field of RL, one is interested in a policy π : S ×
A → [0, 1] that describes the action selection probability at
a given s by π(·|s) ∈ �(|A|). �(|A|) denotes the simplex
{p ∈ R

|A| | p ≥ 0 componentwise, and 1Tp = 1}. Assuming
each player has an independent π i : S × Ai → [0, 1], the
aggregation forms the policy profile π = (π i)i∈N , and player
i’s expected return, or value, starting from s0 is defined as
Vi

π (s0) = E[
∑∞

k=0 γ kri
k | ak ∼ π(sk), ri

k ∼ Ri(sk, ak), sk ∼
P(sk, ak)]. Another important RL concept is the state–action
value, or Q value: Qi

π (s, ai) = E[ri + γ Vi
π (s′) | a−i ∼
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π−i(s), ri ∼ Ri(s, ai), s′ ∼ P(s, a)]. We use −i to indicate the
other players in N except i. The difference between Qi

π and
Vi

π is known as the advantage: Ai
π (s, ai) = Qi

π (s, ai)− Vi
π (s).

In what follows, we sometimes use Aπ i,π−i to denote the
observed advantage of player i when it is playing π i and the
others are playing π−i.

Given the initial state distribution ρ0, player i’s payoff
is the expected value under the profile π : ui(π i,π−i) =∑

s ρ0(s)Vi
π (s), and each player aims to maximize its own pay-

off. Once the other policies π−i are fixed, the game is reduced
to player i’s MDP, and the difference in performance between
player i’s any two policies π i and π i

† follows the policy update
lemma in [25]. Before restating the lemma in a game setting,
we let ρπ (s) = (P(s0 = s)+ γ P(s1 = s)+ γ 2P(s2 = s)+ . . . )

be the discounted visitation frequencies, where s0 ∼ ρ0 and
all players follow π .

Lemma 1 (Restatement of Policy Update [25]): Given the
other policy profile π−i, player i’s payoffs under two policies
π i and π i

† satisfy

ui(π i
†,π

−i) = ui(π i,π−i)

+
∑

s

ρπ i
†,π

−i(s)
∑

ai

π i
†

(
s, ai)Aπ i,π−i

(
s, ai).

Lemma 1 follows directly from the proof
of [25, Appendix A]. Player i’s best response to a
given profile π−i is the policy that maximizes its pay-
off: β i(π−i) = arg maxπ i∈�i ui(π i,π−i), where �i

represents the policy space of player i. If in a profile
π∗ = (π i∗)i∈N each policy is the best response of the
others, the profile is called the Nash equilibrium and satisfies
ui(π i∗,π−i∗ ) ≥ ui(π i,π−i∗ ) ∀π i ∈ �i and ∀i ∈ N .

For any profile in the joint policy space � = (×�i)i∈N ,
NashConv provides a metric to measure the distance to Nash,
that is, NashConv(π) = ∑

i maxπ ui(π,π−i) − ui(π i,π−i). It
always has NashConv(π) ≥ 0 for any profile and is equal to
0 at the Nash equilibrium.

IV. CONVERGENT CONTINUOUS-TIME

LEARNING SCHEME

A. Continuous-Time Learning Dynamics

We now establish the learning scheme for the Nash equilib-
rium of n-player MGs. The outline is that each player keeps a
score function that records its on-going performance, and then
maps the score to a policy that is played with the others to
evaluate performance. The process is modeled in continuous
time, repeated with an infinitesimal time step between three
stages described below. A block diagram of the dynamical
system is given in Fig. 1.

1) Assessment Stage: Consider the current time t and all
players’ profile π t = (π i

t )i∈N . Player i’s score yi
t keeps the

running average of past weighted advantages ρπτ (s)A
i
πτ

(s, ai),
τ ∈ [0, t), at every state–action pair, based on the exponential
discounting aggregation

yi
t(s, ai) = e−ηtyi

0(s, ai)

+ η

∫ t

0
e−η(t−τ)ρπτ (s)A

i
πτ

(
s, ai)dτ ∀s ∈ S ∀ai ∈ Ai

Fig. 1. Block diagram of CTLD. (1/s) indicates the integrator block.

where η > 0 is the learning rate and yi
0 is an arbitrary starting

point. By formally defining an operator wi for each player
mapping from policy to weighted advantage: [wi(π)](s, ai) =
ρπ (s)Ai

π (s, ai), the evolution of score can be described in a
differential form1

ẏi
t = η

(
wi(π t) − yi

t

)
(1)

where the over-dot indicates time derivative.
2) Choice Stage: Once obtained the score, each player is

able to map it to a policy by selecting the greedy action
arg maxai yi

t(s, ai) at every state. To ensure the map is con-
tinuous and single-valued, a smooth and strongly convex
regularizer is used to yield the choice map σ i from score to
policy

σ i : yi → arg max
π i∈�i

⎧
⎨

⎩

∑

ai

yi(s, ai)π i(s, ai) − hi(π i(·|s))
⎫
⎬

⎭
s∈S

.

(2)

Such hi is also called the penalty or smoothing function in [9]
and [37], and is assumed to satisfy the following properties.

Assumption 1 [19]: Let C be a compact convex subset of
a finite-dimensional normed space, and h : C → R be a reg-
ularizer function on C. The following properties hold for all
x, x′ ∈ C and all α ∈ [0, 1]:

1) h is continuous;
2) h is strongly convex, that is, there exists K > 0 such

that

h
(
αx + (1 − α)x′)

≤ αh(x) + (1 − α)h(x′) − 1

2
Kα(1 − α)

∥
∥x − x′∥∥2

.

Assumption 1 describes the characteristics of regularizer
function hi(π i(·|s)) at every state with C being �(|Ai|). By
abuse of notation, we let hi(π i) = ∑

s hi(π i(·|s)), where
hi(π i(·|s)) satisfies Assumption 1 and is Ki-strongly convex.

There are a variety of forms of regularizers, such as the
Tsallis entropy and Burg entropy [9], but a commonly used
one in RL is the (negative) Gibbs entropy

hi(π i(·|s)) = ε
∑

ai

π i(s, ai) log π i(s, ai) (3)

which is continuously differentiable and ε-strongly convex
with respect to L1-norm. ε > 0 is known as entropic parame-
ter. A straightforward benefit with the entropic regularizer is

1One should distinguish between the two time indices t and k: the former
indicates the evolution of score or policy in learning process, while the latter
indicates the state transition in game process.
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the closed-form expression of choice map, which is a softmax
function

[
σ i(yi)](s, ai) =

exp
(

1
ε
yi

(
s, ai

))

∑
b exp

(
1
ε
yi(s, b)

) .

When ε → 0, the choice map tends to select the greedy action
with the highest score at every state. When ε is arbitrarily
large, the policy is like to be uniformly random.

3) Game Stage: With the mapped policy π i
t = σ i(yi

t) ∀i ∈
N , all players play in the game and observe ρπ t and Ai

π t
at

every state and action. Thus, the learning system in (1) oper-
ates continuously. For finite MGs, if the game model (reward
and transition functions) is known, the exact solutions of ρπ t

and Ai
π t

at given π t can be analytically calculated by linear
algebra (as shown in Appendix A).

B. Convergence to Nash Distribution

With all players following the scheme as per above, the
CTLD of the entire system can be written in a stacked form

{
ẏt = η

(
w(π t) − yt

)

π t = σ (yt)
(CTLD)

where yt = (yi
t)i∈N , w(π t) = (wi(π t))i∈N , and σ (yt) =

(σ i(yi
t))i∈N . Bounded reward and softmax choice map make

w◦σ a continuous and bounded function. Hence, the existence
of a fixed point of (CTLD) is guaranteed by Brouwer’s fixed-
point theorem [38]. Denote ȳ = (ȳi)i∈N as the fixed point
satisfying ȳ = w ◦ σ (ȳ), and let π̄ = (π̄i)i∈N be the induced
policy profile with π̄ = σ (ȳ).

Theorem 1:
1) If π∗ = (π i∗)i∈N is a Nash equilibrium to the MG with

regularized payoff, that is, Ui(π i,π−i) = ui(π i,π−i) −
hi(π i) and Ui(π i∗,π−i∗ ) ≥ Ui(π i,π−i∗ ) ∀π i ∈ �i, i ∈ N ,
then y∗ = w(π∗) is the fixed point of (CTLD).

2) The converse is true if each player’s original payoff ui

is individually concave in the sense that ui(π i,π−i) is
concave in π i for all π−i ∈ �−i ∀i ∈ N .

The proof is presented in Appendix B. Note that in the
theorem, the equilibrium is modified to take into account the
influence of regularizer. It is sometimes referred to as Nash
distribution [8], [20] to distinguish from the Nash equilibrium
with original payoffs. If the regularizer in (2) is sufficiently
close to 0, the Nash distribution coincides with the Nash equi-
librium. One condition for the global equivalence between
fixed-point policy and Nash distribution is the individual con-
cavity of game payoffs. In many scenarios [39], [40], a local
Nash is sometimes easier to use than an expensive global
solution. The following corollary extends the second part of
Theorem 1 to local cases by restricting the interested domain
to a neighbor of the fixed point. Its proof is therefore omitted
to avoid unnecessary duplication.

Corollary 1: Let ȳ be the fixed point of w◦σ . If ui is locally
individually concave around π̄ = σ (ȳ) for all players, then π̄

is a local Nash distribution.
Now, we analyze the convergence property of (CTLD) based

on the Lyapunov stability theory of dynamical systems [41].

Consider the Fenchel-coupling function [19] and by summing
over all states, define

Fi(π i, yi) = max
π∈�i

∑

s

⎛

⎝
∑

ai

yi(s, ai)π
(
s, ai) − hi(π(·|s))

⎞

⎠

−
∑

s

⎛

⎝
∑

ai

yi(s, ai)π i(s, ai) − hi(π i(·|s))
⎞

⎠

for any (π i, yi) pair. Naturally, Fi(π i, yi) ≥ 0. By staying
at the fixed-point policy π̄ , we can take

∑
i Fi(π̄ i, yi

t) as the
Lyapunov function and calculate its time derivative along the
solution of (CTLD).

Assumption 2: The choice map σ i and the Fenchel coupling
Fi induced by hi are both continuously differentiable, ∀i ∈ N .

Continuous differentiability is a common assumption used
in Lyapunov stability analysis. It holds for the Fenchel cou-
pling function if we specify the regularizer to the Gibbs
entropy given in (3). For ease of notation and analysis, func-
tions over state and action sets are considered as matrices of
size |S| × |Ai|. Let 〈·, ·〉 be the Frobenius inner product for
the sum of the componentwise product of two matrices, and
‖·‖ be the induced matrix norm with ‖π‖2 = ∑

s ‖π(·|s)‖2.
For n-player aggregation, the above two notations indicate the
sum over all i ∈ N .

Definition 1 (Monotonicity and Hypomonotonicity): An
MG is called monotone if for any policy profiles π and π†, it
has 〈w(π) − w(π†),π − π†〉 ≤ 0. If the inequality holds only
for 〈w(π)−w(π†),π −π†〉 ≤ μ‖π −π†‖2 with some μ > 0,
the game is called μ-hypomonotone.

Theorem 2: Consider the MG and the learning scheme pro-
vided in (CTLD). Assume there are a finite number of isolated
fixed points ȳ of w ◦ σ . Under Assumptions 1 and 2, if the
game is μ-hypomonotone (μ ≥ 0) and the regularizers are
Ki-strongly convex with K > 2μ where K = mini∈N {Ki},
then:

1) players’ scores yt = (yi
t)i∈N converge to a fixed point ȳ;

2) if further the game is individually concave, players’
policies π t = (π i

t )i∈N converge to a Nash distribution
π̄ = σ (ȳ);

3) if instead the game is only locally individually concave
around π̄ = σ (ȳ), players’ policies π t converge to a
local Nash distribution π̄ .

The proof is provided in Appendix C. We here consider
the monotonicity as a special case of hypomonotonicity with
μ = 0. Take the entropic regularizer in (3) for instance, where
K = ε. If the game is monotone, players are able to con-
verge to Nash equilibrium by taking arbitrarily small ε. When
μ > 0, to ensure convergence, the system has to choose
large enough ε > 2μ to compensate the shortage of mono-
tonicity. But too large ε deviates Nash distribution away from
Nash equilibrium, so a tradeoff exists. The following proposi-
tion illustrates that any MGs are hypomonotone with certain
hypomonotone values. Hence, by choosing sufficient ε, our
CTLD is convergent for any MGs.

Proposition 1: For any MGs, there always exists a finite
μ ≥ 0 such that 〈w(π)−w(π†),π −π†〉 ≤ μ‖π −π†‖2 holds
for any two policy profiles.
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Proof: For any policy profile π of a finite MG, we
can analytically calculate ρπ and Ai

π , and show that the
weighted advantage function wi(π) is a continuous function
with bounded derivative on the compact set �. Considering
two profiles (π1, . . . , π j, . . . , πn) and (π1, . . . , π

j
†, . . . , π

n)

with the difference only at the jth entry, there always exists
a positive constant Li

j such that ‖wi(π1, . . . , π j, . . . , πn) −
wi(π1, . . . , π

j
†, . . . , π

n)‖ ≤ Li
j‖π j − π

j
†‖. Hence, for arbitrary

two profiles π and π† with differences at any entries, we can
decompose the inner product 〈w(π) − w(π†),π − π†〉 by

〈
w(π) − w

(
π†

)
,π − π†

〉

=
∑

i

(〈
wi

(
π1, . . . , πn

)
− wi

(
π1

† , . . . , πn
)
, π i − π i

†

〉
+

+
〈
wi

(
π1

† , π2, . . . , πn
)

− wi
(
π1

† , π2
† , . . . , πn

)
, π i − π i

†

〉
+

...

+
〈
wi

(
. . . , πn−1

† , πn
)

− wi
(
. . . , πn−1

† , πn
†

)
, π i − π i

†

〉)

≤
∑

i

∑

j

Li
j

∥
∥
∥π j − π

j
†

∥
∥
∥
∥
∥π i − π i

†

∥
∥

≤
∑

i

∑

j

1

2

(
Li

j + Lj
i

)∥
∥π i − π i

†

∥
∥2

where the first inequality follows Cauchy–Schwarz inequal-
ity and the second inequality follows Young’s inequality. So,
an MG is always μ-hypomonotone with μ ≤ maxi

∑
j(1/2)

(Li
j + Lj

i).

V. EMPIRICAL POLICY OPTIMIZATION

Applications of CTLD to practical large games face obsta-
cles from two aspects: 1) it is very difficult, if not impossible,
to analytically evaluate players’ policies on large state/action
sets and evolve the learning process in continuous time and
2) policies in large-scale problems are not explicitly expressed
but are parameterized by approximators like NNs [10], [42].
In this section, we develop an EPO algorithm to learn param-
eterized policies via RL.

We first transform CTLD to a discrete-time learning dynam-
ics (DTLD) based on stochastic approximation [43]. The
evolution of all players follows the discrete-time update rule:

{
yi

l+1 = yi
l + αlη

(
ŵi

l − yi
l

)

π i
l+1 = σ i

(
yi

l+1

) (DTLD)

where l indicates the discrete-time iteration, ŵi
l is the observed

(noisy) weighted advantage of π l, and αl is the update step.
After transforming (CTLD) into (DTLD), the system runs in
a discrete-time, iterative fashion, which is more easily imple-
mented. According to the stochastic approximation theory, the
long-term behavior of (DTLD) is related to that of solution tra-
jectories of its mean-field ordinary differential equation, which
can coincide with (CTLD) under certain conditions.

Theorem 3: Consider the MG and the learning scheme pro-
vided in (DTLD). Assume there are a finite number of isolated
fixed points ȳ of w ◦ σ . At every iteration l, each player’s ŵi

l
is an unbiased estimate of wi(π l), that is, E[ŵi

l] = wi(π l),
and has E[‖ŵi

l − wi(π l)‖2] ≤ C, for some C ≥ 0. ‖yi
l‖ is

always finite during the learning process. {αl} is a deterministic
sequence satisfying

∑∞
l=0 αl = ∞ and

∑∞
l=0 α2

l < ∞. Under
Assumptions 1 and 2, if the game is μ-hypomonotone (μ ≥ 0)
and the regularizers is Ki-strongly convex with K > 2μ where
K = mini∈N {Ki}, then players’ scores yl converge almost
surely to a fixed point ȳ.

The proof is presented in Appendix D. Note that under
Theorem 3, the almost sure convergence of π l to a (local)
Nash distribution follows the proof of Theorem 2 under the
(local) individual concavity of game payoffs.

In large games, assume each player defines a policy network
π̂ i, parameterized by θ i. The choice map σ i with input yi

l
becomes finding a group of parameters θ i

l that minimize the
loss

min
θ i

Li(θ i) = min
θ i

∑

s,ai

yi
l

(
s, ai)π̂ i(s, ai|θ i) − hi(π̂ i(θ i)).

To avoid extreme change of policy behaviors {π̂ i
l } along iter-

ations, we restrict the new π̂ i(θ i
l ) is trained along the loss

gradient ∂Li/∂θ i, starting from last θ i
l−1, and use an early

stop [11] to bound the KL divergence between the new and
old policies, that is, Es∼ρl−1 [DKL(π̂ i(θ i

l−1)‖π̂ i(θ i
l ))] ≤ c.

If we specify DTLD with αl = (1/l) and η = 1 and ignore
the noise effect, yi

l is actually the average of past weighted
advantages

yi
l

(
s, ai) = 1

l

l−1∑

j=0

ρj(s)A
i
j

(
s, ai)

= 1

l

l−1∑

j=0

ρj(s)Q
i
j

(
s, ai) − 1

l

l−1∑

j=0

ρj(s)V
i
j (s).

Because state-dependent terms make no difference to
the gradient ∂Li/∂θ i, the above sum of values can be
replaced by an empirical value network V̂i(s|φi) that
learns the average of historical weighted values, that is,
V̂i(s|φi) ≈ (1/[

∑l−1
j=0 ρj(s)])

∑l−1
j=0 ρj(s)Vi

j (s). The weighted
calculation ρj(s)[ . . .] is equivalent to the expectation
(1/1 − γ )Es∼ρj[ . . .], and can be further approximated by
samples observed at every iteration [25].

With the value network, the score becomes yi
l(s, ai) =

(1/l)
∑l−1

j=0 ρj(s)(Qi
j(s, ai) − V̂i(s|φi)). The return Gi

j,k on the
on-policy trajectory (sk, ak, sk+1, ak+1, . . . ) generated by π̂ j

is an unbiased estimate of Qi
j(sk, ai

k), but suffers from high
variance. A commonly used form in modern RL is gener-
alized advantage estimator (GAE) [44], which is a biased
but low-variance estimate. For any segment of trajectory
(sk, ai

k, ri
k, sk+1, ai

k+1, ri
k+1, . . . ) in the historical experience,

with the support of V̂i(φi), player i’s λ-GAE is defined as
Âi

k = ∑∞
ν=0(γ λ)νδi

k+ν , where δi
k+ν = ri

k+ν+γ V̂i(sk+ν+1|φi)−
V̂i(sk+ν |φi) is the temporal difference, and λ ∈ [0, 1] is a
constant that balances the bias and variance of estimate. The
policy loss now becomes

Li(θ i) =
∑

Di

[
Âi(sk, ai

k

)
π̂ i(sk, ai

k|θ i) − hi(π̂ i(sk|θ i)
]
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Algorithm 1 EPO for n-Player MGs

1: Initialize policy and value parameters, θ0 = (θ i
0)i∈N , φ0 =

(φi
0)i∈N ; define experience buffer Di = ∅, ∀i ∈ N ; select

entropic parameter ε, GAE parameter λ, KL divergence
threshold c;

2: for l = 0, 1, . . . , do
3: Players play their own π̂ i(θ i

l ) in game and observe
trajectories τ i

l = {(sk, ai
k, ri

k, sk+1)};
4: for each player i do
5: Calculate return Gi

k along τ i
l and store

{(sk, ai
k, ri

k, sk+1, Gi
k)} in Di;

6: Fit empirical value network V̂i(φi) over
Di by regression on mean-squared error
minφi

∑
sk∈Di

(
V̂i(sk|φi) − Gi

k

)2;
7: Compute λ-GAE Âi

k for every sample in Di based on
the regressed V̂i(φi);

8: Train policy network along the gradient of policy loss
Li(θ i), starting from the current θ i

l with KL diver-
gence threshold Esk∼τ i

l
[DKL(π̂ i(θ i

l )‖π̂ i(θ i))] ≤ c;

9: Take the trained θ i as θ i
l+1.

10: end for
11: end for

where Di is the experience buffer of player i throughout the
entire history. Empirically, the clipping technique proposed by
Schulman et al. [11] is helpful to stabilize the optimization.

After combining (DTLD) with DRL techniques, the EPO is
proposed and its entire process is summarized in Algorithm 1.
The learning is totally distributed in the sense that each player
trains its value and policy networks based on own observa-
tions of states, actions, and rewards (lines 5–9). It requires no
knowledge of game structure (how many players are playing
and what the others’ rewards are defined) and does not need
to monitor the other behaviors, so the scheme is applicable
to an arbitrary number of players. All players play their cur-
rent policies (line 3) in the same game, while another n-player
framework–PSRO [16] has to match each player with specific
opponents.

The procedure of EPO shows similarity to that of the
proximal policy optimization (PPO) [11], but with fundamen-
tal differences. EPO follows the idea of CTLD that updates
multiple players’ policies based on the aggregation of their
in-game performance over historical iterations, in contrast to
PPO that optimizes a single-agent policy with the experience
of the current iteration. With the entire historical experience,
EPO updates multiplayer policies in the direction of the Nash
equilibrium.

VI. EXPERIMENTS

In experiments, we consider 2-player Soccer game [3], [22],
3-player Cournot-Competition game [19], and 2-player
Wimblepong game.2

2https://github.com/aalto-intelligent-robotics/wimblepong

Fig. 2. Illustrations of games in experiments. (a) Soccer. (b) Wimblepong.

1) Soccer: On a 4 × 5 board, shown in Fig. 2(a), two
players play a ball to goal. The player possessing the ball
is marked by a circle. Each player can move Up, Down,
Left, Right, or Stay. At an instant, two-side moves are
executed in random order. If the move would take the
player to the opponent square, the possession of the ball
yields to the stationary player, and the move is canceled.
The winning player receives a reward of +100, while the
opponent receives −100. Every step has a probability of
0.01 terminating the game as a draw. γ selects 0.95.

2) Cournot Competition: The original cournot competi-
tion [19] is a continuous game, but here we modify it
to an MG. At step k in each round, the market price
of the same good is determined by the production of
each firm, modeled by P(xk) = a − ∑

i bixi
k, where xi

k
is firm i’s production, and a, bi are constants. Each firm
can choose to increase or decrease its next-step produc-
tion by �xi, or remain unchanged. But due to technical
defects and incorrect manipulation, the decision has only
pi probability of being successfully executed and (1−pi)

probability of leading to the other two outcomes. The
production capacity is bounded by Ci. The reward of
firm i is given by ri(xk) = xi

kP(xk) − cixi
k, where ci

represents its marginal production cost. In our 3-player
setting, pi = 0.8, �xi = 20, a = 400, bi = 2, and
Ci = 100, and c1 = 40, c2 = 35, and c3 = 42. γ

selects 0.9.
3) Wimblepong: It is a 2-player version of Atari game

Pong [10], as illustrated in Fig. 2(b). Each player con-
trols a paddle to play a ball with the other, and can take
one of three actions: moving up or down, or staying in
place. The game state consists of positions of two pad-
dles, and position and velocity of the ball. If a player
misses a ball, it receives −10 reward and the opponent
receives +10 reward. γ selects 0.99.

A. Numerical Examples

We apply the proposed CTLD to learn Nash equilibria for
the first two games.3 Gibbs entropy is adopted as the regular-
izer for the benefit of softmax choice map. For comparison,
we consider the iterated best response (IBR) [45], fictitious
play (FP) [5], PSRO [16], and exploitability descent (ED)
in tabular forms [14], and use policy iteration [46] as their

3The MATLAB implementation is available in https://github.com/
YuanhengZhu/Continuous-time-learning-dynamics.
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(a) (b)

Fig. 3. NashConv learning curves on soccer. (a) CTLD. (b) IBR versus FP
versus PSRO versus ED.

(a) (b)

Fig. 4. NashConv learning curves on Cournot competition. (a) CTLD. (b) IBR
versus FP versus PSRO versus ED.

oracles for best response. PSRO relies on a metasolver to syn-
thesize metastrategies for each player, so we choose linear
programming [47] for the 2-player case and the EXP-D-RL
method proposed in [20] for the 3-player case. ED is origi-
nally proposed in [14] for 2-player zero-sum game, but here is
also applied to the 3-player game. Hyperparameters have been
empirically selected, and implementation details are presented
in Appendix E.

The NashConvs of each method along the learning process
are plotted in Figs. 3 and 4. Fig. 3(a) is obtained by the same
η = 1 and different ε = 0.1, 0.05, 0.02, 0.01, and 0.001.
Fig. 4(a) is obtained by the same η = 1 and different ε =
0.1, 0.01, and 0.001. Since CTLD and the other methods run
in different time scales, their results are presented separately
in different plots. In both experiments, CTLD remains conver-
gent under any regularizer parameter ε, and is able to approach
Nash equilibria with arbitrary precision if ε is close enough to
0. Another empirical learning method, FP, also shows a consis-
tent convergence property. PSRO is remarkable in approaching
Nash equilibrium in Cournot Competition, but ends up with
a noticeable NashConv gap in Soccer game. The convergence
of ED in the 2-player case is guaranteed by the theoretical
results in [14], but the argument is not valid for more than
two players, resulting in a large gap of NashConv in Cournot
Competition. IBR suffers from strategic cycles, so it is hard
to converge.

We also numerically investigate the hypomonotone values
μ of two games. By randomly choosing two policy profiles π

and π†, the result of 〈w(π) − w(π†),π − π†〉/‖π − π†‖2 is
an underestimate of true μ. The distributions of 1000 samples
in two games are plotted in Fig. 5. The true μ is inferred to
be greater than 0.0129 in Soccer and greater than 0.0032 in
Cournot Competition. It reflects that the convergence condition

(a) (b)

Fig. 5. Histograms of sampled 〈w(π)−w(π†), π−π†〉/‖π−π†‖2. (a) Soccer
game. (b) Cournot competition.

(a) (b)

(d)(c)

(e)

Fig. 6. Evolution of CTLD scores at the same ε = 0.05 but different η.
(a) η = 0.1. (b) η = 0.5. (c) η = 1. (d) η = 3. (e) η = 10.

K(= ε) > 2μ in Theorem 2 is not that strict, since we have
observed with smaller ε < 2μ, the CTLD still converges in
both games.

Another hyperparameter in CTLD is the learning rate η, so
we repeat CTLD in Soccer game at the same ε = 0.05 but
different η = 0.1, 0.5, 1, 3, and 10, to observe the effect
of the learning rate. The evolution of scores is plotted in
Fig. 6. It is observed that large η has no influence on the
converged results, but is able to accelerate the convergence
rate.

We repeat the two numerical experiments with DTLD and
plot the learning curves in Fig. 7. The behaviors of DTLD
are consistent with CTLD among most experiments except the
one in Soccer game with ε = 0.01. The curve ends up with an
obvious NashConv gap in contrast to its counterpart in CTLD.
One explanation is that when ε is nearly 0, the choice-mapped
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(a) (b)

Fig. 7. NashConv learning curves of DTLD on numerical examples.
(a) Soccer. (b) Cournot competition.

(a) (b)

Fig. 8. Evaluation of EPO agents learned under different ε. (a) Payoff table.
(b) Ranking-intensity sweep.

policy tends to greedily select extreme actions, instead of a
smooth action distribution. Discrete-time dynamical system
further enlarges the discontinuity of the update of policies,
so the asymptotic behavior of DTLD does not follow the flow
of CTLD. While in Cournot Competition, DTLD shows no
significant degradation even when ε chooses quite small val-
ues, probably because the two problems have different score
ranges.

B. Large-Scale Example

The third Wimblepong game is large scale, so EPO is
applied. We run the experiments with different regularizer
parameters ε and select common values in the RL literature
for the rest algorithm parameters. To reduce random errors,
each experiment is repeated three times. After 400 iterations,
the learned agents under different ε are matched in pairs to
evaluate their agent-level payoff table. The payoff value is cal-
culated by the difference between two-side win rates, and is
averaged over matches played by agents that are obtained in
different runs. We use the multiagent evaluation and ranking
metric, α-Rank [27], to evaluate agent rankings, and present
the results in Fig. 8. EPO with ε = 0.1 shows dominance
in playing against the other EPO agents. Small ε causes the
algorithm to prematurely stop exploration and fall into local
optima, while large ε disturbs action selection.

For comparison, we choose self-play (SP), neural fictitious
SP (NFSP) [48], Nash-based PSRO [16], and PPO [11] against
a script-based SimpleAI opponent. For fairness, the RL parts
of SP, NFSP, and PSRO are all based on a PPO agent. The fic-
titious player in NFSP is trained by supervised learning based
on the historical behavior of the fellow agent. The opponent

(a) (b)

(c) (d)

(e) (f)

Fig. 9. Performance of SP, NFSP, PSRO, PPO, and SimpleAI relative to
baseline EPO(ε = 0.1) in the learning process. The curves are averaged
over random seeds with solid lines indicating mean values and shadow areas
indicating standard variance. NFSP-Fic indicates the fictitious player and
NFSP-PPO indicates the fellow PPO agent. PSRO-Meta indicates the metas-
trategy and PSRO-PPO indicates the fellow PPO agent. (a) PPO/SimpleAI
versus EPO. (b) SP versus EPO. (c) NFSP-Fic versus EPO. (d) NFSP-PPO
versus EPO. (e) PSRO-Meta versus EPO. (f) PSRO-PPO versus EPO.

metastrategy in PSRO is the Nash mixture of historical poli-
cies. The algorithms choose the same parameters as EPO and
vary the entropic parameter ε in training objectives to pro-
duce a variety of agents. We take the learning process of EPO
with the best ε = 0.1 as baseline and evaluate the relative
performance of these algorithms against EPO along the same
number of iterations.

The curves of relative performance are plotted in Fig. 9,
and a common phenomenon is that all curves immediately
drop below zero once the learning starts. It indicates no algo-
rithm improves policies as fast as EPO, and in other words,
EPO is advantageous in finding policy gradient toward Nash
equilibrium. If only playing against a fixed opponent, PPO
agents are not possible to approach Nash equilibrium, shown
by the low relative performance against EPO in Fig. 9(a). With
the increase of iterations, SP, NFSP-PPO, and PSRO-PPO
agents with specific entropic parameters are able to narrow the
gap. Wimblepong game does not severely suffer from strategic
cycles [17], so even for simple SP, it is possible to approach
Nash equilibrium by beating ever-improving opponents. The
fictitious player of NFSP makes much slower progress than
its PPO fellow.
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(a)

(b)

(c)

(d)

Fig. 10. Payoff tables and visualization of EPO populations under different
sizes of experience buffers. Left: Row and column labels indicate agents at
different iterations. Right: 2-D embedding of payoff tables by using the first
two dimensions of Schur decomposition; Color corresponds to average payoff
of an agent against entire population. (a) Latest 1-iteration replay. (b) Latest
10-iteration replay. (c) Latest 100-iteration replay. (d) Full historical replay.

Ablation Study: We now investigate the effect of historical
experience in EPO and run experiments with different sizes
of experience buffer. Note that when the buffer stores only
experience of the latest iteration, the algorithm becomes SP.
Agents after different iterations in an experiment form a pop-
ulation and their payoff table is drawn in Fig. 10. We also plot
the 2-D visualization by Schur decomposition [17] at the right
of the figure. Full replay of historical experience makes EPO
update policies in a transitive and monotone mode. Limited
replay makes the algorithm suffer from policy forgetting, in
the sense that new policies may forget how to beat some old
policies in history. It corresponds to cyclic or mixed shapes in
the 2-D embedding of policy populations.

VII. CONCLUSION

A game-theoretic learning framework for n-player MGs was
proposed. The convergence of the dynamical learning system
to an approximate Nash equilibrium is proved by the Lyapunov

stability theory, and is also verified on different n-player MG
examples. The combination of NNs makes the EPO algorithm
applicable to large games. The distributed implementation and
no need of game interactions with specific opponents makes
it appealing to companies and groups that are less intensive
in computing resources.

There is still space for improvement. The existence of
multiple Nash equilibria may pose a risk to our work,
leading to the decrease of social welfare. Correlated equilib-
rium [2], [6] is a potential solution, since it can be seen as
a superset of Nash equilibrium. After drawing an action pro-
file from the distribution of correlated equilibrium, playing the
suggested action is a best response for each player, given that
everyone else will play their suggested actions. We encourage
research to investigate how small a common knowledge can
be introduced to achieve a promising outcome in coordination
games. Another issue lies in the ever-increasing size of histor-
ical experience. For really large-scale problems, it is infeasible
to store and replay the entire history. There are two potential
solutions. One is to use a minibatch set, instead of the entire
history, to conduct EPO at each training step. The second is
to restrict the experience buffer to store only data of the last
finite number of iterations. These will be our future research
directions.

APPENDIX A
LINEAR ALGEBRA IN CTLD

Consider each player’s policy π i : S × Ai → [0, 1] as a
matrix with rows indicating states, columns indicating actions,
and elements indicating probabilities. Similarly, given a policy
profile π , the state transition function Pπ : S ×S → [0, 1] is
expressed in matrix with each entry equal to

Pπ

(
s, s′) =

∑

a1

∑

a2

· · ·
∑

an

π1
(

a1|s
)
π2

(
a2|s

)
. . . πn(an|s) ×

× P
(

s′|s, a1, a2, . . . , an
)

and the expected reward function Ri
π : S → R under π is a

vector with each entry equal to

Ri
π (s) =

∑

a1

∑

a2

· · ·
∑

an

π1
(

a1|s
)
π2

(
a2|s

)
. . . πn(an|s) ×

× Ri
(

s, a1, a2, . . . , an
)
.

Then, the state visitation frequency ρπ , value Vi
π , Q value Qi

π ,
and advantage Ai

π are analytically calculated by

ρπ = (
I − γPT

π

)−1
ρ0

Vi
π = (I − γPπ )−1Ri

π

Qi
π = Ri

π−i + γPπ−iVi
π

Ai
π = Qi

π − Vi
π .

Note that I − γPT
π and I − γPπ are always invertible due to

the property of transition matrix. The weighted advantage in
CTLD is obtained by inserting above analytic solutions into

wi(π) = ρπ � Ai
π

where � indicates the Hadamard (elementwise) product.
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APPENDIX B
PROOF OF THEOREM 1

Before proving Theorem 1, a useful lemma on Nash
equilibrium is first introduced.

Lemma 2: If π∗ is a Nash equilibrium to MG with regu-
larized payoff, then

∑

s

ρπ∗(s)
∑

ai

π i∗
(
s, ai)Ai

π∗
(
s, ai) − hi(π i∗

)

≥
∑

s

ρπ∗(s)
∑

ai

π i(s, ai)Ai
π∗

(
s, ai) − hi(π i)

for all π i ∈ �i, i ∈ N .
Proof: For any π i, let π i

† = (1 − α)π i∗ + απ i, where α ∈
[0, 1]. According to Lemma 1

ui(π i
†,π

−i∗
) = ui(π i∗,π−i∗

)

+
∑

s

ρ
π i

†,π
−i∗ (s)

∑

ai

π i
†

(
s, ai)Ai

π∗
(
s, ai).

After substituting it into Ui(π i
†,π

−i∗ ) and based on the con-
vexity of hi with hi(π i

†) ≤ (1 − α)hi(π i∗) + αhi(π i), we
have

Ui(π i
†,π

−i∗
)

= ui(π i∗,π−i∗
) +

∑

s

ρ
π i

†,π
−i∗ (s)

∑

ai

π i
†

(
s, ai)Ai

π∗
(
s, ai)

− hi(π i
†

)

≥ ui(π i∗,π−i∗
) − hi(π i∗

)

+
∑

s

ρ
π i

†,π
−i∗ (s)

∑

ai

π i
†

(
s, ai)Ai

π∗
(
s, ai)

+ α
(
hi(π i∗

) − hi(π i))

= Ui(π i∗,π−i∗
) + g(α)

where

g(α) =
∑

s

ρ
π i

†,π
−i∗ (s)

∑

ai

π i
†

(
s, ai)Ai

π∗
(
s, ai)

+ α
(
hi(π i∗

) − hi(π i)).

Based on the fact that π∗ is Nash equilibrium to the regu-
larized payoff, Ui(π i∗,π−i∗ ) ≥ Ui(π i

†,π
−i∗ ), g(α) must have

g(α) ≤ 0 ∀α ∈ [0, 1]. When α = 0, π i
† = π i∗ and g(0) = 0

by definition, it is inferred that ∇αg(α)|α=0+ ≤ 0. Calculating
the derivative of g(α)

∇αg(α) =
∑

s

∑

ai

(
∇αρ

π i
†,π

−i∗ (s)π i
†

(
s, ai)A

π i∗,π−i∗
(
s, ai)

+ ρ
π i

†,π
−i∗ (s)∇απ i

†(s, ai)A
π i∗,π−i∗

(
s, ai)

)

+ hi(π i∗
) − hi(π i)

and using the fact that
∑

ai π i∗(s, ai)A
π i∗,π−i∗ (s, ai) = 0 yields

∇αg(α)|α=0+

=
∑

s

ρπ∗(s)
∑

ai

(
π i(s, ai) − π i∗

(
s, ai))Ai

π∗
(
s, ai)

+ hi(π∗) − hi(π i) ≤ 0

which implies the conclusion.
Proof of Theorem 1: 1) If π∗ is a Nash equilibrium with

respect to Ui, Lemma 2 implies that π∗ = σ (y∗) where y∗ =
w(π∗). After inserting into y∗ = w(π∗), we conclude y∗ is the
fixed point.

2) With the fixed point ȳ and the induced π̄ , consider any
π i ∈ �i and let π i

† = (1 − α)π̄ i + απ i where α ∈ [0, 1].
Lemma 1 implies that

ui(π i
†, π̄

−i)

= ui(π̄ i, π̄−i) +
∑

s

ρπ i
†,π̄

−i(s)
∑

ai

π i
†

(
s, ai)Ai

π̄

(
s, ai)

= ui(π̄ i, π̄−i)

+
∑

s

ρπ i
†,π̄

−i(s)
∑

ai

α
(
π i(s, ai) − π̄ i(s, ai))Ai

π̄

(
s, ai)

where the second equality uses the fact that∑
ai π̄ i(s, ai)Ai

π̄ (s, ai) = 0. Based on the individual concavity
of ui, that is, ui(π i

†, π̄
−i) ≥ (1−α)ui(π̄ i, π̄−i)+αui(π i, π̄−i),

it is inferred that
∑

s

ρπ i
†,π̄

−i(s)
∑

ai

(
π i(s, ai) − π̄ i(s, ai))Ai

π̄

(
s, ai)

≥ ui(π i, π̄−i) − ui(π̄ i, π̄−i). (4)

Since ȳ = w ◦ σ (ȳ) and π̄ = σ (ȳ), then
∑

s

ρπ̄ (s)
∑

ai

π̄ i(s, ai)Ai
π̄

(
s, ai) − hi(π̄ i)

≥
∑

s

ρπ̄ (s)
∑

ai

π i(s, ai)Ai
π̄

(
s, ai) − hi(π i).

After taking α = 0, we conclude that

ui(π̄ i, π̄−i) − hi(π̄ i) ≥ ui(π i, π̄−i) − hi(π i)

holds for all π i ∈ �i ∀i ∈ N and, thus, π̄ is a Nash
equilibrium to the game with regularized payoffs.

APPENDIX C
PROOF OF THEOREM 2

The following lemmas of Fenchel-coupling function
Fi(π i, yi) are useful for the proof of Theorem 2.

Lemma 3: Let hi be a Ki-strongly convex regularizer. For
all π i ∈ �i and yi ∈ R

|S|×|Ai|, the induced Fenchel coupling
has

Fi(π i, yi) ≥ 1

2
Ki

∥
∥σ i(yi) − π i

∥
∥2

.

Proof: According to [19, Proposition 4.3(b)], the inequal-
ity holds at every state with vector norm. The conclusion for
matrix form is obtained by summing up all states.

Lemma 4: Let hi be the regularizer, σ i be the choice map,
and Fi be the Fenchel coupling. Under Assumptions 1 and 2,
the following holds for all π i ∈ �i and yi ∈ R

|S|×|Ai|:

∇yiFi(π i, yi) = σ i(yi) − π i

Proof: Viewing π i and yi as matrices of size |S| × |Ai|,
according to the envelope theorem [49, Th. 1.F.1], the deriva-
tive of maxp∈�(|Ai|)

∑
ai yi(s, ai)pai −hi(p) toward the sth row

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Huawei Technologies Co Ltd. Downloaded on May 05,2023 at 14:07:07 UTC from IEEE Xplore.  Restrictions apply. 



ZHU et al.: EMPIRICAL POLICY OPTIMIZATION FOR N-PLAYER MARKOV GAMES 11

of yi is equal to

∇yi
s

⎛

⎝ max
p∈�(|Ai|)

∑

ai

yi(s, ai)pai − hi(p)

⎞

⎠ = [
σ i(yi)]

s.

Besides, ∇yi
s
(
∑

ai yi(s, ai)π i(s, ai)−hi(π i(s))) = π i
s. By stack-

ing the above derivatives in rows and based on the definition
of Fi, we have ∇yiFi(π i, yi) = σ i(yi) − π i.

Proof of Theorem 2: 1) Consider the semi-positive function
Fi(π̄ i, yi

t) on yi
t. By Lemma 4, its derivative toward yi

t equals
∇yi

t
Fi(π̄ i, yi

t) = σ i(yi
t) − π̄ i. Along the solution of (CTLD),

the time derivative of Fi(π̄ i, yi
t) has

Ḟi(π̄ i, yi
t

)

= η
〈
wi(π t) − yi

t, σ
i(yi

t

) − π̄ i〉

= η
(〈

wi(π t), σ
i(yi

t

) − π̄ i〉 − 〈
yi

t, σ
i(yi

t

) − π̄ i〉)

= η
(〈

wi(π t), σ
i(yi

t

) − π̄ i〉 + hi(π̄ i) − hi(π i
t

) − Fi(π̄ i, yi
t

))

≤ η
(〈

wi(π t), σ
i(yi

t

) − π̄ i〉 − 〈
ȳi, π i

t − π̄ i〉 − Fi(π̄ i, yi
t

))

= η
(〈

wi(π t) − wi(π̄), π i
t − π̄ i〉 − Fi(π̄ i, yi

t

))

where the third equality follows the definition of Fi(π̄ i, yi
t),

and the inequality is based on π̄ i = σ i(ȳi), which yields:

〈
ȳi, π̄ i〉 − hi(π̄ i) ≥ 〈

ȳi, π i
t

〉 − hi(π i
t

)
.

The above analysis holds for all i ∈ N , so we can take
V(yt) = ∑

i∈N Fi(π̄ i, yi
t) as the Lyapunov function, whose

time derivative has

V̇(yt) ≤ η
∑

i

(〈wi(π t) − wi(π̄), π i
t − π̄ i〉 − Fi(π̄ i, yi

t)
)
.

The assumption on game hypomonotonicity and Lemma 3
implies

V̇(yt) ≤ −1

2
η(K − 2μ)

∥
∥σ (yt) − σ (ȳ)

∥
∥2

.

Thus, under K ≥ 2μ, V̇(yt) ≤ 0 ∀yt, and V̇(yt) = 0 for all
yt ∈ E = {y | σ (y) = σ (ȳ)}, let M be the largest invariant
set in E . By LaSalle’s invariance principle [41, Th. 4.4], from
any starting point, yt approaches M as t → ∞. On E the
dynamics of (CTLD) becomes

ẏt = η
(
w(σ (ȳ)) − yt

) = η
(
ȳ − yt

)

so yt → ȳ as t → ∞. Thus, no other solution except ȳ can
stay forever in E , and M consists only of fixed points. Since
we assume the system has a finite number of isolated fixed
points, so yt converges to one of them.

2) If the payoff ui is individually concave, Theorem 1-2)
implies that π̄ = σ (ȳ) is the Nash distribution. By continuity
of σ , we conclude that π t = σ (yt) converges to the Nash
distribution.

3) Similarly, the convergence to local Nash distribution is
supported by Corollary 1.

VIII. PROOF OF THEOREM 3

We borrow the idea of [20] in NFGs to study the learning
process of MGs. Based on the assumptions on ŵl, DTLD is
the stochastic approximation of CTLD, and conversely, CTLD
is the mean dynamics of DTLD. Let y

t
be the continuous-

time linear interpolation associated to the discrete-time process
{yl}. With satisfying {αl}, the asymptotic behavior of {yl} and
y

t
is the same [43]. Furthermore, under [43, Propositions

4.1 and 4.2], the continuous-time linear interpolation y
t

of
{yl} is a precompact asymptotic pseudotrajectory of the flow
associated to (CTLD), and by [43, Th. 5.7], the limit set L
of y

t
is nonempty and an internally chain transitive set of

the flow of (CTLD). In Theorem 2, we have proved that
CTLD always converges to E , so by [43, Proposition 5.3] and
by [50, Proposition 3.27], it follows that L is compact invari-
ant for (CTLD) and L ⊂ E . Recall that the largest invariant
subset of E consists only of fixed points, so L consists only
of fixed points. Thus, for any y

0
, y

t
converges to one of them

as t → ∞, and hence, yl converges almost surely to one of
them as l → ∞.

APPENDIX E
DETAILS OF ALGORITHM IMPLEMENTATION

A. IBR

IBR runs following the update formula π i
l+1 = β i(π−i

l ),
where the best response oracle uses policy iteration.

B. FP

FP runs following the update formula π i
l = β i(π̃−i

l ),
where π̃−i

l = (π̃
j
l )j∈N \i and π̃

j
l = (1/l)(π j

0 + · · · + π
j
l−1) is

the fictitious policy that averages the empirical behaviors of
player j.

C. PSRO

At the lth iteration, each player has completed its empirical
payoff table Ui[0 : l−1, 0: l−1, . . . , 0: l−1] over the popula-
tions containing all players’ historical policies. Each element
Ui[l1, l2, . . . , ln] corresponds to player i’s payoff under profile
(π1

l1
, π2

l2
, . . . , πn

ln
), where 0 ≤ li ≤ l − 1 ∀i. The metasolver

finds the metastrategy μi = p0π
i
0 + p1π

i
1 + · · · + pl−1π

i
l−1 for

each player based on the empirical payoff tables {Ui}. Then,
each player uses the oracle to find the best response to the
others’ metastrategies, π i

l = β i(μ−i), and adds the new policy
into the population for the next iteration.

D. ED

At every iteration of ED running, each player calculates its
best response μi

l to the current profile π l, that is, μi
l = β i(π−i

l ).
Then, player i evaluates its policy π i

l against the others’ best
response (μ

j
l)j∈N \i and obtains the advantage A

π i
l ,μ

−i
l

. The
policy is updated by taking a small step along the advantage

π i
l+1 = �

(
π i

l + αlAπ i
l ,μ

−i
l

)

where � is a projection to the policy space and αl is the update
step. Note that the above update formula differs from the one
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TABLE I
HYPERPARAMETERS OF EPO, SP, NFSP, PSRO, AND PPO

ALGORITHMS IN WIMBLEPONG GAME

proposed by Lockhart et al. [14] in the selection of update
direction. Here, we use advantage while Lockhart et al. [14]
used a Q value, but they are equivalent in policy gradient direc-
tion. In Soccer experiment we vary αl among 0.001, 0.003,
0.01, and 0.03, and the best αl = 0.001 is selected as repre-
sentative for comparison in Fig. 3(b). In Cournot Competition,
we also try αl = 0.003, 0.01, 0.03, 0.1, 0.3 for ED and choose
the result by αl = 0.1 as the best representative in Fig. 4(b).

E. EPO/SP/NFSP/PSRO/PPO

These algorithms are realized in the framework of PPO-Clip
implementation released in OpenAI’s Spinning Up package
(under the MIT License). In Wimblepong experiments, they
share the values of hyperparameters listed in Table I.4 The
entropic parameter ε in policy loss varies among 0, 0.003,
0.01, 0.03, 0.1, and 0.3. Random seed selects among 100,
200, and 300.

The experiments are conducted on Intel 32 Core E5-2620
CPU and Nvidia 2080TI GPU with 64G RAM.

Payoff or relative performance of two agents is evaluated
by setting up 1000 matches between them and calculating
the difference of their win rates. Positive payoff indicates the
first agent is stronger than the latter one, and negative payoff
indicates the opposite. Learned at different random seeds, the
multiple solutions of an agent are matched with the multiple
solutions of its opponent with uniform probability, in order to
reduce random effects.
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