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Abstract— Communicating agents with each other in a distrib-
uted manner and behaving as a group are essential in multi-agent
reinforcement learning. However, real-world multi-agent systems
suffer from restrictions on limited bandwidth communication.
If the bandwidth is fully occupied, some agents are not able to
send messages promptly to others, causing decision delay and
impairing cooperative effects. Recent related work has started
to address the problem but still fails in maximally reducing
the consumption of communication resources. In this article,
we propose an event-triggered communication network (ETCNet)
to enhance communication efficiency in multi-agent systems by
communicating only when necessary. For different task require-
ments, two paradigms of the ETCNet framework, event-triggered
sending network (ETSNet) and event-triggered receiving network
(ETRNet), are proposed for learning efficient sending and receiv-
ing protocols, respectively. Leveraging the information theory,
the limited bandwidth is translated to the penalty threshold of an
event-triggered strategy, which determines whether an agent at
each step participates in communication or not. Then, the design
of the event-triggered strategy is formulated as a constrained
Markov decision problem and reinforcement learning finds the
feasible and optimal communication protocol that satisfies the
limited bandwidth constraint. Experiments on typical multi-agent
tasks demonstrate that ETCNet outperforms other methods in
reducing bandwidth occupancy and still preserves the cooperative
performance of multi-agent systems at the most.
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I. INTRODUCTION

DEEP reinforcement learning (DRL) has been playing
a significant role and achieving remarkable success

in a variety of challenging problems, such as turn-based
games [1], [2], real-time video games [3], [4], robotics
control [5], automatic optimization [6], [7], and image clas-
sification [8]. As an extension, multi-agent reinforcement
learning (MARL) has also received more and more atten-
tion in many scenarios where a stand-alone agent fails in
accomplishing complicated tasks due to the lack of cooper-
ation [9]. MARL has not only succeeded in simulated game
environments [10] but also practical application, such as order
allocation [11] and vehicle scheduling [12]. The existence of
multiple agents poses some common issues, such as non-
stationarity [13], partial observability [14], [15], dimension
explosion [16], credit assignment [17], and so on. In recent
research [18], it has been demonstrated that through internal
communication, agents are able to share local information
and pursue the same goal, which is important to address
the nonstationarity and partial observability in a multi-agent
environment. Of particular interest is the distinction between
two lines of research, that is hand-crafted communication
protocols [19] and learnable communication protocols [20].
Different from its definition in the field of the internet,
communication protocol in MARL indicates the mapping from
high-dimensional observation to low-dimensional message and
the communication mechanisms (such as multihop, gated con-
trol, and in this article, event trigger) among agents. Especially
the advent of MARL allows learning the protocols in an end-
to-end way. Unfortunately, communication networks in the real
world have limited bandwidth. If there are a large number of
agents and they send messages excessively, the network can be
easily blocked, delaying message transmission and impairing
cooperative effects.

Some research in MARL has been proposed to learn com-
munication with limited bandwidth [21]–[24]. However, some
critical problems are still not well studied. Existing methods
focus more on the reduction of sending behaviors but pay less
attention to the explicit definition of the network bandwidth.
Hence, conditions under which agents decide whether to
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send messages are not directly designed to fulfill bandwidth
limitation.

Motivated by that, this article proposes a new event-
triggered communication network (ETCNet) framework to
realize efficient communication in MARL faced with limited
bandwidth. First of all, the limited bandwidth is translated into
a communicating penalty threshold mathematically, which is
further put into an optimization problem as a constraint. Then,
the event-triggered sending network (ETSNet) and event-
triggered receiving network (ETRNet), as two paradigms of
ETCNet, are proposed to learn when to send and receive
messages for different tasks, respectively. The event-triggered
concept is realized in the architecture and each sending
or receiving behavior is determined by an event-triggered
module with a gating policy. The opening of the gating
policy poses a penalty for bandwidth occupation, but it
enhances multi-agent cooperation because of sharing infor-
mation. Therefore, the synthesis of gating policy is put into
a constrained Markov decision process (MDP) optimization,
with the multi-agent performance as the objective and the
limited bandwidth as the constraint. After introducing the
Lagrange multiplier, reinforcement learning adaptively finds
the optimal solution in a trial-and-error manner. We list the
main contributions as follows.

1) We propose ETCNet and its two concrete implemen-
tation paradigms, ETSNet and ETRNet, to realize effi-
cient cooperation in multi-agent systems. By leveraging
end-to-end reinforcement learning, the learned event-
triggered policies aim to make an agent participate in
communication at each step only when necessary.

2) By translating the limited bandwidth into a penalty
threshold mathematically and combining it with the
multi-agent optimization objective, we establish a con-
strained MDP model to learn the event-triggered com-
munication protocols.

3) To verify the effectiveness, two typical particle
multi-agent tasks, including cooperative navigation and
predator-prey scenarios and a packet routing task, are
simulated. We compare our method with other MARL
methods that also consider the limited-bandwidth con-
straint, including SchedNet [22], gated actor critic
message learner (Gated-ACML) [23], and Message-
dropout [25]. After comparison, our ETCNet signifi-
cantly reduces the bandwidth consumption and preserves
the cooperative performance with marginal impact.

II. RELATED WORK

A. Communication Protocols in Multi-Agent Community

Communication is crucial in a multi-agent cooperative task
because of information sharing [18]. Learning communica-
tion protocols of multi-agent systems has attracted consid-
erable attention in the literature. Existing research directions
include the message content [26], the attention mechanism of
learning compacted messages [27], and the memory-driven
communication [28]. However, they pay little attention to
the restriction of limited bandwidth in a communication
network. Some recent MARL methods make agents learn
to choose what, when, and with whom to communicate
efficiently utilizing finite communication resources. IC3Net

[29] extends the work of CommNet [20] by means of long
short-term memory and the gating mechanism. Gated-ACML
[23] and ATtentiOnal Communication (ATOC) [21] both
evaluate the importance of communication by comparing
the Q-difference between sending messages and not. If the
difference exceeds a threshold, agents consider the mes-
sage is valuable and choose to communicate with others.
SchedNet [22] leverages weight generators to choose top-k
agents with apparently more valuable observations to par-
ticipate in the communication group and broadcasts their
messages to the others. The purpose of the above-mentioned
methods is to reduce bandwidth consumption, but there is no
mathematical definition of bandwidth constraints. Informative
multi-agent communication (IMAC) [24] argues that explicit
mathematical relations exist between the entropy of messages
and the bandwidth and introduces the mutual information
to approximate message entropy. By restricting the mutual
information to an upper bound, the problem becomes a con-
strained optimization that aims to learn the efficient message
generators. However, the system still transmits messages at
each moment, causing the waste of communication resources
if the messages at consecutive moments have similar or even
the same content.

B. Event-Triggered Mechanism

Another drawback of the above-mentioned work is that
agents decide whether to communicate based on the cur-
rent observation. We extend the event-triggered concept to
multi-agent communication and learn the appropriate commu-
nication protocols or behaviors. The event-triggered concept
is important in the field of control theory to reduce the update
of control signals in networked control systems [30]–[32],
where the occupation of a communication network to send
signals is conditioned on the difference of a predefined energy
function between the current observation and a previous one.
A similar scheme is multi-instant gain scheduling, formed
by interpolating between a set of linear controllers for the
control of nonlinear systems. It distinguishes possible working
modes first and then uses a different corresponding controller
for each possible working mode in accordance with specific
rules [33]. In [34] and [35], DRL is used to learn both the
triggering law and the control policy. But they only consider
the single-agent MDP problem, which is relatively simpler
than the multi-agent scenarios. That is, an agent has to transmit
control signals to the actuator. It is different from our work that
considers communication and coordination AMONG agents.
Demirel et al. [36] studies N learning agents in N subsystems
transmitting control signals to their actuators with a shared and
limited communication network. It is a typical optimization
problem of resource allocation. There is: 1) no encoding
and 2) no message transmitted AMONG agents. Besides,
there is no coordination (because of no communication), and
these methods are not friendly to some multi-agent scenar-
ios where the observations are high-dimensional like images
(because of no encoding). Our ETCNet is brand-new research
on MARL based on communication, in which observation
encoding modules, event-triggered communication modules,
and action decision modules are all LEARNED by the
end-to-end reinforcement learning.
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Fig. 1. Framework of ETCNet. Env is the environment interacting with agents. ENC is the encoding module for observation encoding and is implemented
with EncoderNet. ACT is the agent action module for agent action execution and is implemented with ActorNet. ET is the event-triggered gating module for
gate controlling and is implemented with GatingNet. ETSNet decides whether the current message will be sent to other agents or not, and ETRNet decides
whether to receive messages from other agents or not. ZOH represents the zero-order holder module.

III. PRELIMINARIES ON DEC-POMDP
WITH COMMUNICATION

We consider MARL in the framework of decentralized
partially observable MDP (DEC-POMDP), which is described
as a tuple �S,A, P, R,O, Z , N, γ �, where N is the number
of agents; S denotes the state space of the problem; O =
{Oi}i=1,2,...,N represents the sets of observations for each agent;
A = {Ai }i=1,2,...,N denotes the sets of actions. Z(s, i) :
S → Oi is the observation function that determines the private
observation, and the agent i receives a private observation by
oi = Z(s, i). P(s �|s, a) : S × A × S → [0, 1] represents
the state transition function, where a = (a1, a2, . . . , aN ) is the
joint action. R = {Ri }i=1,2,...,N : S × A → R

N represents
the set of reward functions. γ ∈ [0, 1] denotes the discount
factor. Each agent aims to learn a policy πi (ai |oi) : Oi → Ai

that maximizes the expected discounted return E[∑∞
t=0 γ tri,t ],

where ri,t ∼ Ri (st , at).
Sharing observations improves the performance of the

whole multi-agent system and makes each agent learn the bet-
ter policy. In such case, the policy is written by πi (ai |oi , o−i ) :
Oi ×O−i → Ai , where o−i = (o1, . . . , oi−1, oi+1, . . . , oN ) ∈
O−i is the joint observation of other agents except i .
If observations are high-dimensional, they have to be encoded
to low-dimensional representations to reduce data trans-
mission. The policy with communication is denoted by
πi(ai |oi , m−i ) : Oi ×M−i → Ai , where m−i = [m1, . . . ,
mi−1, mi+1, . . . , m N ] ∈ M−i denotes the messages that
agent i receives from its teammates in full-communication
scenarios.

In this way, we extend DEC-POMDP to a communicative
one to enhance cooperation. The process of communica-
tion consists of encoding, transmission, and decoding. The
encoding process maps the message to a bitstream, which
is transmitted through a communication channel. Decoding
is the inverse operation of encoding to recover the message.
For ease of analysis, we assume the message m satisfies

a certain distribution M and contains a fixed length of symbols
with the entropy denoted by H (M). The communication
network has a bandwidth B . According to Shannon’s source
coding theorem [37], the average number of bits Nb must
satisfy Nb ≥ H (M) in order to encode the message without
the risk of information loss. The maximum data rate Rmax (bits
per second) [38] in a noiseless channel has Rmax = 2B log2 K ,
where K is the number of discrete levels in the signal.
IMAC [24] combines the above-mentioned two requirements
together and argues that the relationship between bandwidth
and message entropy has 2B log2 K = Rmax ≥ nNb ≥
nH (M), where n denotes the maximum symbols transmitted
per second.

IV. EVENT-TRIGGERED COMMUNICATION NETWORK

Now, we formally present our ETCNet, and its two con-
crete implementation paradigms, ETSNet and ETRNet. First,
we detail the architecture to show its advantage of saving
bandwidth and maintaining multi-agent cooperation. Second,
the limited bandwidth is converted to the penalties of sending
or receiving behaviors. By adding the new constraint to the
multi-agent cooperative objective, the gating policy is learned
by reinforcement learning to solve a constrained optimization
problem.

A. Architecture

Fig. 1 presents the architecture of ETCNet in multi-agent
settings. The execution process of each agent consists of three
phases: 1) observation encoding by ENC modules; 2) message
gating and sending or receiving by ET modules; and
3) decision making by ATC modules. The ET module is
designed in an event-triggered way such that the sending/
receiving behavior happens only if necessary. At the
decision-making stage, if an agent opens its transmission gate,
its current message will be sent to other agents in ETSNet,
or it sends a requirement to others and receives their current
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Fig. 2. Illustration of Ui,t whose elements are event-triggered time points
of agent i . Ui,t contains time t in (a) but not in (b) on the basis of whether
the transmission gate is open at time t or not.

messages in ETRNet, to decide cooperative actions. ETSNet
and ETRNet are suitable for different practical scenarios:
ETSNet tends to estimate the value of its observations to
others. When the estimated value exceeds a threshold, ETSNet
sends its messages to assist others in their decision-making,
e.g., in the cooperative navigation task (detailed in Section V).
On the contrary, ETRNet tends to estimate the value of its
own observations to itself. When the estimated value drops a
threshold, ETRNet immediately receives the latest messages
from others to assist its own decision-making, e.g., in the
routing task (detailed in Section V). In both paradigms, if an
agent receives no new message, they will use the latest
received message, memorized by a zero-order holder (ZOH)
module, to continue to cooperate.

Before digging into the detailed design, we list some key
notations as follows: consider N agents, for agent i at time t ,
its observation is denoted by oi,t ; its current message is
mi,t = ei(oi,t ), where ei (·) is the encoding function in the
ENC module; its gating action is denoted by gi,t ∼ μi(·),
where μi(·) represents the gating action function in the
ET module; its action executed on the environment is denoted
by ai,t ∼ πi (·), where πi(·) represents the agent action
function in the ACT module. The gating action samples
from {0, 1}, where 1 represents the event is triggered, and
the transmission is open. Otherwise, 0 is not.

We specify Ui,t = (t i
0, . . . , t i

r , . . .) to denote the set
of event-triggered time points t i

r at the current time t ,
as shown in Fig. 2. The more explicit expression for the
above-mentioned variables and functions is presented. The gat-
ing policy is denoted by gi,t ∼ μi(mi,t , rmi,t−1, mi,t̂ i ), where
rmi,t−1 represents the latest received messages from others
no later than time t − 1 in event-triggered communication
scenarios, mi,t̂ i represents the message at the latest triggering
moment, memorized by ZOH, and t̂ i = arg min

κ∈Ui,t−1

{t − κ}. Note

that Ui,t−1 could not be updated to Ui,t before agent i makes
gating decisions at t . An agent chooses to send or receive
messages only when it considers the messages will facilitate
cooperation.

The agent action follows ai,t ∼ πi(oi,t , rmi,t ), where rmi,t =
(rmi,t,1, . . . , rmi,t,i−1, rmi,t,i+1, . . . , rmi,t,N ). For ETSNet,

rmi,t, j = m j,t̃ j , and t̃ j = arg min
κ∈U j,t

{t − κ}. For ETRNet,

rmi,t, j = m j,t̃ i , and t̃ i = arg min
κ∈Ui,t

{t − κ}. In addition to their

own observations, the policy uses the latest received messages
(if there are) or the memorized messages from others to
realize cooperation.

Compared with existing work (e.g., Gated-ACML [23],
ATOC [21], and SchedNet [22]), the most significant differ-
ence in architecture is that our ETCNet not only uses the
current observation to define the sending or receiving condition
but also relies on the latest received messages and its own
message at the latest triggering moment. Beyond that, if no
message is received, the agent uses the memorized message,
rather than the zero vectors to prevent the loss of information
and preserve the cooperation performance.

B. Limited-Bandwidth Constraint and Penalty Threshold

According to the preliminary, the maximum symbols trans-
mitted per second n on a limited-bandwidth channel satisfy

n ≤ 2B log2 K

H (M)
. (1)

However, the distribution and entropy of message M is
generally unknown, and all we can get are its statistical
properties like mean and variance. The principle of maximum
entropy [39] proves that the Gaussian distribution has the max-
imum entropy compared with other probability distributions
with the same mean and variance. We can take the entropy of
a Gaussian distribution H (X) = log(2πeσ 2), X ∼ N(μ, σ )
as an upper bound of H (M), where μ and σ are the mean
and variance of symbols in messages m. Substituting it back
to (1) yields

n ≤ 2B log2 K

H (X)
= 4B log2 K

log
(
2πeσ 2

) . (2)

Suppose the gating policy has a probability of p sending or
receiving messages at each step, and a message has a length
of L symbols. The system sampling frequency is F . For the
task with N agents, each of which communicates with up
to J others. The average number of symbols on the channel
is equal to NJLFp and should be no greater than n. Then,
we can deduce an upper bound of probability that each agent
is allowed to send or receive messages at each step

p ≤ psup = clip

(
4B log2 K

log
(
2πeσ 2

)
NJLF

, 0, 1

)
(3)

where clip(x, a, b) denotes that x is truncated in the
interval [a, b]. In this article, the probability must be con-
strained in [0, 1].

Since sending/receiving messages or not corresponds to
the open or close of the gating policy, we can describe the
occupation of bandwidth as a sum of penalties over the time
horizon

C = E

[ ∞∑
t=0

γ t
I
(
gi,t = 1

)] ≤ psup

1− γ
= Csup (4)
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where Csup indicates the penalty threshold, and I(gi,t = 1)
specifies the instantaneous penalty when an agent occupies
the bandwidth.

With the original sum of rewards as the optimization
objective, the problem now becomes solving the constr-
ained MDP

max E

[ ∞∑
t=0

γ t ri,t

]
, s.t. E

[ ∞∑
t=0

γ t gi,t

]
≤ Csup. (5)

Note that IMAC [24] also gives an explicit mathematical
transformation of bandwidth limitation. It reduces bandwidth
occupation through message compression, but the transmission
frequency is fixed. Our ETCNet keeps the completeness of the
information and reduces the frequency of sending/receiving
messages in an event-triggered way.

C. Optimization Algorithm

In implementing ETCNet, we define three neural networks
for each agent: EncoderNet, GatingNet, and ActorNet. They
correspond to the encoding function, the gating action func-
tion, and the agent action function, respectively. All the homo-
geneous agents share the same models, rather than defining
different network parameters. To lower down the learning
difficulty of three networks, we separate the training into two
processes. First, we train the EncoderNet and ActorNet at full
communication. That is, the event-triggered module always
sends or receives messages. After obtaining the well-trained
EncoderNet and ActorNet, we keep them fixed and train
the GatingNet.

1) Training EncoderNet and ActorNet: The centralized
training and decentralized execution (CTDE) paradigm is
adopted to train EncoderNet and ActorNet to overcome the
nonstationary problem. Typically we use a centralized Critic-
Net parameterized by θc to estimate the state value function
Vθc(υi,t ) ≈ E[∑∞

t=0 γ t ri,t ], where υi,t = [oi,t , o−i,t ] is taken
as the approximation of the global state s. The EncoderNet
and ActorNet are parameterized by θe and θa , respectively.
The critic value is updated based on temporal difference (TD)
as

δc,i = ri,t + γ Vθc

(
υi,t+1

)− Vθc

(
υi,t

)
(6)

Lcritic
i,t = δ2

c,i (7)

where ri,t + γ Vθc(υi,t+1) is the TD target for estimating
Vθc(υi,t ). The EncoderNet and ActorNet train the parameters
θe and θa by back-propagation of the policy loss Lact_enc

i,t as
follows:
Lact_enc

i,t = − log πi
(
ai,t |oi,t , rmi,t , θa, θe

)
δc,i

− αH
(
πi

(
ai,t |oi,t , rmi,t , θa, θe

))
(8)

where the entropy term is used to discourage premature
convergence.

2) Training GatingNet: After learning the EncoderNet and
ActorNet at the pretraining stage, we apply them to ETCNet
framework and keep their parameters fixed. Now, we learn
the GatingNet parameterized by θg, for the gating policy

μi(mi,t , rmi,t−1, mi,t̂ i |θg) to satisfy the constrained optimiza-
tion as (5). We treat the gating as an action with OPEN and
CLOSE two discrete options and use stochastic policy for the
discrete action set. We use a Lagrangian multiplier β ≥ 0 to
deal with the constraint and define the Lagrangian function

L(μi , β) = E

[ ∞∑
t=0

γ t
(
ri,t − βgi,t

)]+ βCsup. (9)

The dual-objective d(β) of the primal problem is defined as

d(β) = sup
μi

L(μi , β). (10)

Suppose at step t , we have had an estimate of β, denoted
as βt . The optimal solution for (10) is to find μ∗i =
arg max

μi

L(μi , βt ), which is in fact reduced to solve a new

MDP optimization with the new reward r �i,t = ri,t − βt gi,t .
Reinforcement learning is able to optimize the multi-agent
performance considering the new reward signal by updating
the gating policy with the learned EncoderNet and ActorNet.
A centralized LagrangianNet parameterized by θL is used to
estimate the state value function VθL (υ

�
i,t ) ≈ E[∑∞

t=0 γ t r �i,t ] for
the GatingNet, where υ �i,t = [υi,t , rmi,t , rm−i,t ] and rm−i,t =
[rmi,t , . . . , rmi−1,t , rmi+1,t , . . . , rmN,t ], and the value and pol-
icy losses are defined by

δL ,i = r �i,t + γ VθL

(
υ �i,t+1

)− VθL

(
υ �i,t

)
(11)

LLagr
i,t = δ2

L ,i (12)

Lgate
i,t = − log μi

(
gi,t |mi,t , rmi,t−1, mi,t̂ i , θg

)
δL ,i

− αH
(
μi

(
gi,t |mi,t , rmi,t−1, mi,t̂ i , θL

))
(13)

where r �i,t + γ VθL (υ
�
i,t+1) is the TD target for estimating

VθL (υ
�
i,t ). Note that βt is an estimate of the true β and the

optimal multiplier β∗ satisfies

β∗ = arg min
β≥0

d(β). (14)

Then, βt is updated following:
βt+1 = (βt − ηβ∇d(β))+ (15)

∇d(β) = ∂d(β)

∂β
= ∂L(μi , β)

∂β

∣∣∣∣
μi=μ∗i

= −E

[ ∞∑
t=0

γ t gi,t

]
+ Csup (16)

where (x)+ denotes that x is truncated in the positive field.
A PenaltyNet parameterized by θp is used to estimate the
penalty value function to approximate Vθp(υi) ≈ E[∑∞

t=0
γ t gi,t ]. Its parameters are updated based on TD

Lpenalty
i,t = [

gi,t + γ Vθp

(
υ �i,t+1

)− Vθp

(
υ �i,t

)]2
. (17)

Then, the update of β becomes

βt+1 =
(
βt − ηβ

(−Vθp + Csup
))+

. (18)

Considering the variance of messages varies with the change
of the gating policy, we calculate the variance and update the
penalty threshold Csup periodically throughout the training.
At the end of gradient iterations, the optimal policy μ∗i for
the unconstrained problem is obtained. The pseudocode of
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Algorithm 1 ETCNet
Initialize the network parameters β, θe, θa, θc, θg, θL , and θp

Training the EncoderNet and ActorNet at the full communication to obtain the optimal agent policy function π∗
and encoding function e∗:
Set gi,t ≡ 1 for all i and t
for episode = 1 to M do

Initialize the observation ot

for t = 1 to T do
mt ← calculate the message mi,t = ei(oi,t |θe) of each agent i
at ← sample the action ai,t ∼ πi (oi,t , m−i,t |θa) of each agent i
Execute the actions at , and observe the reward rt , next observation ot+1, and the approximate global state υt+1

Store (ot , at , r t , ot+1,υt+1) in the replay buffer B
Sample a minibatch of samples {(ot � , at � , r t � , ot �+1,υt �+1)} from B
Update θc for all agents by minimizing the loss (7) based on the minibatch
Update θa and θe for all agents by minimizing the loss (8) based on the minibatch

end
end
The optimal agent policy function π∗ and encoding function e∗ are obtained.
Training the GatingNet while keeping the EncoderNet and ActorNet fixed to get the optimal gating policy
function μ∗:
Set πi = π∗ and ei = e∗ for each agent i
for episode = 1 to M do

Initialize the observation ot

for t = 1 to T do
mt ← calculate the message mi,t = ei(oi,t |θe) of each agent i
gt ← sample the gating action gi,t ∼ μi(mi,t , rmi,t−1, mi,t̂ i |θg) of each agent i
Execute the gates gt , and update the memorized message mi,t̂ i and the received messages rmi,t

at ← sample the action ai,t ∼ πi (oi,t , rmi,t |θa) of each agent i
Execute the actions at , and observe the reward rt , next observation ot+1, and the approximate global state υt+1

Store (oi,t , mi,t̂ i , rmi,t−1, gi,t , rmi,t , ri,t , βt , ot+1, υ
�
t+1) in the replay buffer B

Sample a minibatch of samples {(oi �,t � , mi �,t̂ i� , rmi �,t �−1, gi �,t � , rmi �,t � , ri �,t � , βt � , ot �+1, υ
�
i �,t �+1)} from B

Update θL by minimizing the loss (12) based on the minibatch
Update θg by minimizing the loss (13) based on the minibatch
Update θp by minimizing the loss (17) based on the minibatch
Update βt according to (18) based on the minibatch

end
end
The optimal gating policy μ∗ is obtained.
return θe, θa , θg

training ETCNet is presented in Algorithm 1. First, we train
the EncoderNet and ActorNet at full communication to obtain
the optimal agent policy and encoding functions. Second, we
keep them fixed and then train the GatingNet to get the optimal
gating policy function. After the two-stage training, ETCNet
is able to perform multi-agent cooperation at low consumption
of communication resources.

Note that in the field of control theory, event-triggered
control mainly focuses on reducing the update of control
signals, and its triggering condition relies on a predefined
energy function [31], [32], or only considers single-agent MDP
problem [34], [35]. Some work in the MARL community
uses the event-triggered control signals to control their own
actuators, without communication and cooperation among
agents [36]. The event-triggered module is applied to reduce
the transmission of messages, and the communication proto-
cols are learned from scratch.

V. EXPERIMENTS

Three scenarios are considered to investigate the coopera-
tion among agents and test the performance of ETCNet on
saving communication resources. Two variants of multi-agent
particle environments, cooperative navigation and predator
and prey [14] are shown in Fig. 3(a) and (b), respectively.
Routing [23], [40], which simulates routing in packet switch-
ing networks in the real world, is shown in Fig. 3(c).

Cooperative Navigation: There are n agents, and each agent
aims to arrive at a specified and dynamic destination by
moving along discrete directions within a specific area. The
top and the bottom, and the left and the right of the area
are interconnected. Each agent only observes the positions
of itself and the destination and position of its navigational
information receiver. Once an agent reaches its destination,
it will get a positive reward. Otherwise, there is always a
negative reward until the end of the episode. We adopt and
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Fig. 3. Illustrations of two-particle multi-agent tasks and routing. (a) Circle
represents an agent, and the pentagram with the same color represents its
destination. (b) Green circle represents a prey, and a small square represents
a predator with the local view surrounded by a large square. (c) Cylinder
represents a data packet; a circle represents a router, and a line represents a
cable. (a) Two-agent cooperative navigation. (b) Four-agent predator and prey.
(c) Eight-agent routing.

modify the two-agent cooperative navigation task in [26]. Each
agent’s observation includes its positions, the other agent, and
the other’s destination (6-D). The optional actions of each
agent are moving up, down, left, right, and staying still (five-
discrete).

Predator and Prey: In this scenario, n predators chase m
preys within a certain area. The top and the bottom, and the
left and the right of the area are interconnected. Predators
and preys have the same velocity, and preys are equipped
with a fixed escape policy (running from the closest predator)
and have a complete map vision. A predator only has a local
view around itself; therefore, they have to cooperate to capture
prey and are required to avoid collision with other predators.
We adopt the predator and prey task in [26]. A predator
has a 5 × 5 size of the local view, and its observation
includes the position of itself and the state of its local view
[25 (preys in local view) + 25 (predators in local view) + 2
(self-coordinates) = 52-dimensional]. The optional actions of
predators are moving up, down, left, right, and staying still
(five-discrete).

Routing: The packet switching network consists of
m routers, each randomly connected to a constant number
of routers (three in the experiment). The network topology
is stationary. There are n data packets/agents with random
size, a source, and a destination router. It takes some time
steps, a linear function of the cable length, for an agent to go
through a cable between two routers. If the cable is congested
with multiple agents and their sum size is larger than the
bandwidth, the agents stop and wait for the next time step.
In short, agents aim to quickly reach the destination and get a
positive reward with less congestion. Each agent only observes
its own attributes (i.e., ID, current location, destination, and
data size), a load of cables and neighboring routers connected

to its current location [36 (its own attributes) + 4 (a load of
neighboring routers)+ 3 (a load of cables) = 43-dimensional].
Once the agent arrives at the destination, it leaves the system,
and a new agent enters the system with random initialization.
We adopt the routing task in [23].

There are mainly two kinds of communication styles in
existing researches. The first is broadcasting communication
(e.g., A3C2 [26] and DIAL [41]), in which each agent
sends messages directly to all the others. The second is two-
stage-point-to-point communication (e.g., SchedNet [22] and
Gated-ACML [23]), in which the messages of all agents are
first sent to a node for centralized processing, and then the
processed messages are sent to all agents separately. Putting
aside communication styles, the purpose of this article is to
propose a more efficient communication triggering mechanism
and to show its advantage over Q (used in ATOC [21] and
Gated-ACML), top-k (used in SchedNet), and random (used in
message-dropout [25]) communication mechanisms. Our base-
lines for limited bandwidth are: 1) Gated-ACML; 2) SchedNet;
and 3) message-dropout. In addition, A3C2 is introduced as
a full-communication version. In fairness, the communication
mechanisms of all methods are set to the same as A3C2. That
is, each agent sends or receives the same encoded message to
the others. Ideally, A3C2 allows agents to communicate fully
and should have the best performance. In message-dropout,
agents can only send messages with a certain probability so
that it can be seen as the randomly failed communication
version of A3C2. The gate module in Gated-ACML works
almost the same as the attention module in ATOC [21];
therefore, we choose Gated-ACML as the baseline to represent
the class of Q-based algorithms. Note that SchedNet selects
top-k agents to send or receive messages at each step, leading
to the discrete property of sending probability in the N-agent
systems, such as 1/N and k/N . For the sake of fairness,
we set equally sending probabilities for every baseline by
adjusting some parameters, such as the bandwidth of ETCNet,
Q-difference threshold of Gated-ACML, and the probability of
dropout in message-dropout.

In cooperative navigation and predator and prey, an agent
can communicate with all other agents; therefore, we choose
the ETSNet as the specific implementation paradigm
of ETCNet. In Routing, an agent can communicate with up to
three neighbors. That is, the communication topology is not
fixed; therefore, we choose the ETRNet as the implementation
paradigm of ETCNet.

A. Cooperative Navigation

In this task, we first consider two-agent cooperative naviga-
tion and communication network with the number of discrete
levels K = 2 and the number of symbols in a message
L = 6. The sampling frequency of the system has F =
45 Hz. The bandwidth is first limited to 170 bit/s. At the
full communication of ETSNet, the variance of messages
is σ 2 = 0.69; therefore, the maximally allowed commu-
nication probability is about 50.0%. After calculating the
penalty threshold and continuing the GatingNet training in
the event-triggered architecture, we observe that the message
variance varies slightly smaller to σ 2 = 0.57, which further
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TABLE I

PERFORMANCE OF ETSNET AND BASELINES FOR COOPERATIVE NAVIGATION WITH
DIFFERENT AGENT NUMBERS AND COMMUNICATION UPPER BOUNDS

TABLE II

PERFORMANCE OF ETSNET AND BASELINES FOR PREDATOR AND PREY WITH DIFFERENT AGENT NUMBERS AND COMMUNICATION UPPER BOUNDS

relaxes the upper bound of communication probability. In fact,
the final ETSNet allows agents to send messages at each step
only with 46.3% probability, lower than the desired 50.0%.

We conduct the experiments in two-agent and five-agent
cooperative navigation and take the number of steps accom-
plishing the task as the evaluation. The fewer the steps, the bet-
ter the performance. We run 1000 times in the test phase and
use Table I to show the results of ETSNet and baselines under
different communication probabilities and agent numbers.
It is observed that ETSNet is far superior to other methods
under the same communication constraint and is closest to the
performance of full communication. Moreover, the trend of
performance with the change of bandwidth manifests that it is
consistent with the fact that more communication is beneficial
to multi-agent cooperation.

To demonstrate that ETSNet can greatly reduce band-
width consumption and preserve the multi-agent coopera-
tion, we repeat the experiment with B = 100 bit/s and
B = 60 bit/s in two-agent cooperative navigation. Fig. 4
shows the learning curves of ETSNet with different band-
widths. Fig. 4(a) shows that the more limitation on bandwidth,
the more degradation of performance at the early stage. But the
curves are still stabilized back to near optimality through the
later training. Fig. 4(b) shows that all experiments optimize
the sending penalties to satisfy corresponding thresholds.
The final communication percentages are 14.4%, 24.1%, and
46.3% for B equal to about 60, 100, and 170, respectively.
It is concluded that ETSNet is capable of adjusting to different
bandwidth constraints and preserving the best performance.

B. Predator and Prey

In this task, we first consider the three-agent predator and
prey. The communication networks have K = 2 and L = 15.

Fig. 4. Learning curves for cooperative navigation with respect to different
bandwidths. (a) Step evaluation. (b) Mean penalty per step.

The sampling frequency of the system has F = 45 Hz. The
bandwidth is first limited to 580 bit/s. At the full communi-
cation of ETSNet, the variance of messages is σ 2 = 0.330;
therefore, the maximally allowed communication probability
is about 33.3%. After calculating the penalty threshold and
continuing the GatingNet training in the event-triggered archi-
tecture, we observe that the message variance barely changes;
therefore, the bandwidth limitation is not violated.

We take the number of steps accomplishing the task as
the evaluation: the fewer the steps, the better the perfor-
mance. Table II gives the performance of ETSNet and base-
lines with three agents and 33.3% desired communication
probability. It shows that SchedNet is competitive with our
ETSNet, and they both achieve similar performance to the
full-communication results.

We further compare their performance and analyze the
trend of performance with the change of agent number and
bandwidth under different communication probabilities and
agent numbers. The results are also listed in Table II. In some
experiments, ETSNet outperforms all baselines, while in the
others, it is competitive to the best SchedNet, as indicated in
italic form. The performance gap between ETSNet and full
communication is quite small. It is worth noting that ETSNet
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TABLE III

PERFORMANCE OF ETRNET AND BASELINES FOR ROUTING WITH DIFFERENT COMMUNICATION UPPER BOUNDS

Fig. 5. Learning curves for predator and prey with respect to different
bandwidths. (a) Step evaluation. (b) Mean penalty per step.

works in a variety of limited-bandwidth settings and optimally
exploits the bandwidth. The communication probability in
SchedNet is proportional to 1/N since its mechanism is to
select top-k agents to send messages at each step.

Fig. 5 shows the learning curves of ETSNet for three-agent
predator and prey with different bandwidths (B = 580 bit/s
and B = 1200 bit/s). The learned gating policies send mes-
sages at probabilities p = 31.7% and p = 55.7%, respectively.
The plot shows that the learning process with the lower
bandwidth has a lower frequency of sending messages, but the
evaluation is worse than the learner with higher bandwidth.
It is consistent with the fact that more communication is
beneficial to multi-agent cooperation.

C. Routing

In this scenario, we consider ten-packet and ten-router rout-
ing. The communication networks have K = 2 and L = 43.
The sampling frequency of the system has F = 45 Hz. The
bandwidth is first limited to 5500 bit/s. At the full communi-
cation of ETRNet, the variance of messages is σ 2 = 0.151;
therefore, the maximally allowed communication probability
is about 40.0%. After calculating the penalty threshold and
continuing the GatingNet training in the event-triggered archi-
tecture, we observe that the message variance barely changes;
therefore, the bandwidth limitation is not violated.

We take the total reward of packets being successfully
routed to their destination nodes as the evaluation: the greater
the reward, the better the performance. Table III gives the
performance of ETRNet and baselines with ten agents under
different communication probabilities. It is observed that
ETRNet outperforms other methods under the same com-
munication constraint and is closest to the performance of
full communication. We further compare their performance
under different communication probabilities. The results are
also listed in Table III and show that ETRNet outperforms

Fig. 6. Learning curves for routing with respect to different bandwidths.
(a) Reward evaluation. (b) Mean penalty per trajectory.

Fig. 7. Learning curves with respect to the ablation of memorized messages
in πi and μi . (a) Step evaluation. (b) Mean penalty per step.

all baselines. The performance gap between ETRNet and
the full communication is relatively small compared with
baselines. Moreover, the trend of performance with the change
of bandwidth shows that more communication is beneficial to
cooperation.

Fig. 6 shows the learning curves of ETRNet for ten-agent
routing with different bandwidths (B = 2750 bit/s, B =
5500 bit/s, and B = 6800 bit/s). The learned gating policies
receive messages at probabilities p = 52.8%, p = 40.5%,
and p = 16.7%, respectively. The plot shows that the learning
process with a lower bandwidth has a lower frequency of
receiving messages, and the evaluation is worse than the
learner with higher bandwidth. However, there is little eval-
uation degradation when the communication probability goes
down significantly. Therefore, in other words, ETRNet can
adjust to different bandwidth constraints and preserve the best
performance as much as possible.

D. Ablation

To investigate the effect of the memorized messages in agent
policy πi and gating policy μi , we conduct some ablation
studies. Fig. 7 shows the learning curves of ETCNet on
cooperative navigation with different ablation.

First, we analyze the effect of the memorized messages in
agent policy πi , which assists decision-making. In ablation,
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Fig. 8. Illustration of Lagrangian terms in cooperative navigation. (a) Csup ≈
12 and Csup ≈ 8 when the final communication percentage converges to about
60.0% and 40.0%, respectively. (b) Vθp ≈ 12 and Vθp ≈ 8 accordingly, and
thus, ∇d(β) ≈ 0 when the learning process converges. (a) Penalty threshold.
(b) Expected accumulative penalties.

we pad the zero vector to ActorNet when an agent receives
nothing. We observe that the system finally learns full commu-
nication in order to maintain multi-agent cooperation. Obvi-
ously, it fails in satisfying the bandwidth constraints.

Next, we disentangle the influence of the memorized mes-
sages in gating policy μi . The GatingNet only takes the
current message as input, regardless of the latest triggering
message. The two blue lines reveal that the ablation of the
memorized messages in μi leads to performance degradation
and bandwidth consumption. Without knowing what has been
sent in the past, the event-triggered learner has to increase
sending frequency to ensure others successfully receive valu-
able messages. It disturbs the learning of the multi-agent policy
and deteriorates cooperation effects.

E. Convergence Analysis of Lagrange Multiplier

According to (16), we conclude that the expected accumula-
tive penalty Vθp obtained by PenaltyNet is getting close to the
penalty threshold Csup and ∇d(β) is getting close to 0 when
the training is completed. We demonstrate this argument by
analyzing the training curves of Csup, as shown in Fig. 8(a),
and Vθp , as shown in Fig. 8(b), in five-agent cooperative
navigation scenario. The following results are obtained under
different bandwidth constraints. As mentioned, the relationship
between Csup and communication percentage psup satisfies (4).
At the starting point of the two curves in Fig. 8(a), the penalty
threshold has Csup ≈ 20 when fully communicating ( psup = 1)
with γ = 0.95. After training, as shown in Fig. 8(a), agents
finally learn to communicate with probability about 60.0% as
the red curve and 40.0% as the blue one. The corresponding
penalty threshold has Csup ≈ 12 and Csup ≈ 8, respectively.

Meanwhile, the curves in Fig. 8(b) show that the expected
accumulative penalty has Vθp ≈ 12 and Vθp ≈ 8. Therefore,
∇d(β) ≈ 0 following (16) when the training is completed and
the Lagrange multiplier β converges to its optimal solution.

F. Demonstration of Event-Triggered Gating in Time Domain

We argue that agents in ETCNet send messages only when
necessary. We demonstrate this argument by analyzing system
trajectories of cooperative navigation obtained by ETCNet.1

Fig. 9 shows gating actions and representative sceneries in a
trajectory. We first focus on the sending behaviors of the blue
agent. It sends a message at the starting point (a) and does not
send at (b) because of no changes in its observations. It even
refuses to send a message at (c) when the red destination
moves. It is because the latest received message of the red
agent can still help in choosing the correct action (toward the
left), especially considering that the red destination is likely to
change later. It sends a message at (d) because the old message
will mislead the red agent in the wrong direction. Then, we pay
attention to the gating of the red agent. It does not send a
message at (e), although its observation changes with the blue
destination. The blue agent continues to utilize the old message
and moves forward in the correct direction. When the blue
agent reaches its destination at (f), the epoch terminates with
both agents accomplishing their tasks. It suggests that ETCNet
agents trigger the gating policy only when the communication
is essential for cooperation, not simply determined by the
change of observation.

The argument is also supported by the same experiment in
four-agent predator and prey under the desired communication
probability of less than 25.0%. Because the time steps are
too long to elaborate, we select a representative fragment and
analyze the rationality of gating actions in Fig. 10. We focus
on the sending behaviors of the red and the yellow predators.
At the starting point (a), the yellow predator sees the prey and
sends a message to the others. The red predator utilizes this
message to cooperate with the yellow one to surround the prey.
The prey moves downward to escape from the closest yellow
predator across (b) and (c). Even though the two predators
are not communicating at these moments, the red predator
still utilizes the old message and moves toward the correct
direction. At (d), the prey changes its escaping direction
because of the approach of two predators. The yellow predator
observes the change of prey behavior; therefore, it sends a
new message to notify the others. At and after (e), the two
predators can see each other in their local views; therefore,
they stop sending messages and cooperate directly to capture
the prey at (f).

G. Demonstration of Event-Triggered Gating in Spatial
Domain

We expect that agents in ETCNet send or receive mes-
sages not simply considering the change of observations.
We demonstrate this argument by analyzing the system tra-
jectories of two-particle environments obtained by ETCNet

1The short demonstration videos of these two scenarios have been uploaded
to https://github.com/bithgz/video-of-ETCNet
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Fig. 9. Event-triggered gating display in a trajectory of cooperative navigation. The circle represents an agent and the pentagram with the same color
represents its destination. The yellow ring surrounding an agent indicates it is currently sending message. (a) Two agents send messages at the starting point.
(b) Need not send messages for no changes of observations. (c) Red agent needs not to be informed. (d) Blue agent sends a cooperative message. (e) Blue
agent needs not to be informed. (f) Epoch terminates.

Fig. 10. Event-triggered gating display in a fragment of a trajectory of four-agent predator and prey. We focus on the sending behaviors of the red and
the yellow predators for the sake of simplicity. The square represents a predator and the green circle represents a prey. The black ring surrounding an agent
indicates it is currently sending a message. (a) All agents send messages at the starting point. (b) All agents need not to be informed. (c) All agents need not
to be informed. (d) Yellow agent sends a cooperative message. (e) All agents need not to be informed. (f) Epoch terminates.

Fig. 11. Observations of an agent in three trajectories of predator and
prey. The coordinates of every point are processed by PCA to compress the
observation to 2-D. The solid circle represents the agent is currently sending
a message. The arrows indicate the temporal order, and the arrows of different
colors represent different trajectories.

in the spatial domain. We record an agent’s observations
and its gating actions in three trajectories and use principal

Fig. 12. Observations of an agent in three trajectories of cooperative
navigation. The coordinates of every point are processed by PCA to compress
the observation to 2-D. The solid circle represents the agent is currently
sending a message. The arrows indicate the temporal order, and the arrows
of different colors represent different trajectories.

component analysis (PCA) to compress raw observations to
2-D features. The visualization of trajectories is displayed
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in Figs. 11 and 12, corresponding to cooperative navigation
and predator and prey, respectively. The distance between
two points can approximately reflect the difference between
two observations. As shown in Fig. 11, some fragments, such
as red ellipses, show that even though there is no obvious
difference in observations between two triggering moments,
ETCNet still allows the agent to send messages. However,
some fragments show that even though there are significant
differences in observations between the head and endpoints in
blue ellipses, ETCNet prohibits the agent from participating
in the communication. It reveals that the triggering condition
is not simply determined by the change of observations.

VI. CONCLUSION

In this work, we propose ETCNet for MARL with
limited bandwidth communication. Bandwidth limitation is
mathematically transformed into a penalty threshold to restrict
communicating behaviors. Combined with the multi-agent
optimization objective, we establish a constrained MDP model
to learn the event-triggered communication protocols. Experi-
mental results show that ETCNet learns to communicate only
when necessary and outperforms other methods in cooperation
under different bandwidth constraints.
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