
RLMixer: A Reinforcement Learning Approach
For Integrated Ranking With Contrastive User

Preference Modeling

Jing Wang1*, Mengchen Zhao2*, Wei Xia2, Zhenhua Dong2, Ruiming Tang2,
Rui Zhang3, Jianye Hao2,4, Guangyong Chen5�, and Pheng-Ann Heng1

1 The Chinese University of Hong Kong, Hong Kong
{jing}@link.cuhk.edu.hk, {pheng}@cse.cuhk.edu.hk

2 Huawei Noah’s Ark Lab
{zhaomengchen, xiawei24, dongzhenhua, tangruiming, haojianye}@huawei.com

3 www.ruizhang.info {rayteam}@yeah.net
4 Tianjin University, Tianjin, China

5 Zhejiang Lab, Zhejiang, China {gychen}@zhejianglab.com

Abstract. There is a strong need for industrial recommender systems to
output an integrated ranking of items from different categories, such as
video and news, to maximize overall user satisfaction. Integrated ranking
faces two critical challenges. First, there is no universal metric to evaluate
the contribution of each item due to the huge discrepancies between
items. Second, user’s short-term preference may shift fast between diverse
items during her interaction with the recommender system. To address
the above challenges, we propose a reinforcement learning (RL) based
framework called RLMixer to approach the sequential integrated ranking
problem. Benefiting from the credit assignment mechanism, RLMixer can
decompose the overall user satisfaction to items of different categories, so
that they are comparable. To capture the user’s short-term preference,
RLMixer explicitly learns user interest vectors by a carefully designed
contrastive loss. In addition, RLMixer is trained in a fully offline manner
for the convenience in industrial applications. We show that RLMixer
significantly outperforms various baselines on both public PRM datasets
and industrial datasets collected from a widely used AppStore. We also
conduct online A/B tests on millions of users through the AppStore. The
results show that RLMixer brings over 4% significant revenue gain.

Keywords: Integrated ranking, Reinforcement Learning, Contrastive
Learning

1 introduction
Traditional ranking systems focus on ranking homogeneous items, such as a
list of news, according to a specific metric like click-through rate. However,
in practice, the final recommendation result presented to a user is usually a
mixture of heterogeneous items. For example, in the news feeds scenarios, the
recommendation list might consist of news, videos, advertisements and various
form of cards. A straightforward way is to fix some slots for specific categories,

* The first two authors contributed equally to this work.

2 J. Wang et al.

which is commonly adopted in industrial recommender systems. However, this
is clearly not the optimal strategy since the user’s preferences towards each
category evolve during interaction with the recommender system.

The optimal integrated ranking module is required to rank items of different
categories in order to maximize the overall utility of the recommender system.
The unique challenges of integrated ranking are two-fold. First, we lack a unified
metric to evaluate the qualities of items from different categories. Thus they
cannot be compared in one dimension directly. Second, users’ preferences towards
each category could be essentially different and shift during the interaction. For
example, a user might find an interesting video while reading news and keep
looking for similar videos. This personalized short-term preference shifting is
hard to capture since the user feedbacks are usually implicit.

To address the first challenge, existing works try to use reinforcement learning
to allocate categories to slots [11]. Unfortunately, their model focuses on inserting
advertisements to news feed and does not generalize to integrated ranking with
multiple categories of items. To address the second challenge, various methods
have been proposed to learn representations of users’ short-term interests [20,
19]. However, they focus on implicitly mining knowledge from recent interacted
items without explicitly modeling user preferences.

In this paper, we propose RLMixer for general integrated ranking problems.
The novelties of RLMixer lie in the following three aspects. First, we propose a
general and flexible MDP formulation that covers a broad range of integrated
ranking problems. Second, we explicitly model the user’s short-term preferences
towards different categories and propose a carefully designed contrastive loss for
learning them. Third, RLMixer can be trained fully offline, significantly saving
online exploration costs and avoiding bias caused by simulation. Specifically, we
implement RLMixer by conservative-q learning along with divergence penalty.

As far as we know, RLMixer is the first offline reinforcement learning ap-
proach to solve general integrated ranking problems. We successfully tackled
the aforementioned issues with appropriate MDP modeling and a novel offline
training framework. We compare RLMixer with several baselines on the pub-
lic PRM datasets, as well as industrial datasets. We also deploy RLMixer on
a widely used AppStore, where apps from different sources and categories are
ranked together. Experimental results show that RLMixer significantly improves
the original ranking quality and brings over 4% revenue gain.

2 Related Work
2.1 Integrated Ranking
Integrated ranking focuses on reranking items based on the roughly mixed het-
erogeneous items list while lacking a unified metric, while existing work mainly
focuses on allocating advertisements to a list of organic items, which can be re-
garded as a particular case of integrated ranking. Koutsopoulos [7] defines ads
allocation as a shortest-path problem on a weighted directed acyclic graph and
apply the Bellman-Ford algorithm to solve it. Yan et al. [16] propose a uniform
formula to rank advertisements and organic items together, considering the im-
pact of interval between them. Zhao et al. [18] propose a novel deep Q-network to

RLMixer 3

determine when and how to interpolate advertisements. Liao et al. [11] propose
Cross-DQN to extract the crucial arrangement signal by crossing the embeddings
of different items and modeling the crossed sequence by multi-channel attention.
Unfortunately, existing works consider only advertisements and organic items,
which limits their application in general integrated ranking problems with more
than two categories of items. Moreover, their methods require online or off-policy
training, which might incur huge online exploration costs.

2.2 Offline RL for Recommendation
Reinforcement learning for recommendation systems has attracted increasing in-
terest in recent years. Zheng et al. [6] propose DRN for news recommendation,
an off-policy framework with an online exploring network to balance exploration
and exploitation. Chen et al. [2] propose a policy gradient method with various
techniques to reduce the variance of policy gradients. Zhao et al. [17] propose a
DDPG-based algorithm for learning optimal ranking weights to combat cheat-
ing sellers in e-commerce. However, existing work directly applies RL without
considering how the user’s preferences evolve during the interaction.

Inspired by the abundant historical interactions in recommendation scenar-
ios, offline reinforcement learning is an emerging topic that aims to learn agent
policy purely from dataset [4, 8–10]. Offline RL strives for the issue of the over-
estimation of out-of-distribution actions, which introduces significant extrap-
olation error in policy learning. A popular method to address this is to use
behavioral regularizations in RL training that compel the learned policy to stay
close to the offline data. These regularizations consist of incorporating some di-
vergence regularization into the critic [9], policy divergence penalties [14, 4], and
appropriate network initializations [12]. Regarding its application in recommen-
dation, Xiao et al. [15] summarize several offline learning tricks and demonstrate
their effectiveness in recommendation.

3 Integrated Ranking via Reinforcement Learning
In this section, we formally define the problem formulation for integrated ranking
with the reinforcement learning settings.

Integrated ranking serves as a re-ranking module in the whole chain of the
recommendation system, and aims to output a re-ranked list that maximizes the
overall utility of the system. Figure 1 illustrates our decision making process
with three categories of items. Due to the huge combinatorial action space of
processing the whole list at the same time, we re-rank items within a sliding
window among the original list step by step.

Integrated ranking is naturally a sequential decision making problem, we
model the integrated ranking as a Markov Decision Process < S,A, r,P, γ >:

State space S: S is the set of states describing the state space of the
integrated ranking module. A state s ∈ S consists of the user information (e.g.,
age, gender, purchasing power), the originally ranked list, candidate items(i.e.,
items needed to be re-ranked at current step) and other contextual information.

Action space A: An action a ∈ A is a sequence of categories whose length
is the size of sliding window. Assume there are C related categories in total. An

4 J. Wang et al.

Fig. 1. Illustration of integrated ranking three categories of items with window size
3. The policy of RLMixer output a 3*3 matrix, where the rows represent the slots to
be filled and the columns represent categories. During execution, the category with
the highest score in each row is selected. Then the item that ranked highest in the
corresponding category is fetched and filled in the slot.

action can be represented as a vector a = (C1, C2, ..., CW), where W is the size
of the sliding window and Ci ∈ {1, 2, ..., C} indicates its category.

Rewards: The reward is calculated based on the system’s overall utility,
which is the accumulated revenue(e.g., price) of cliked items in our case.

Transitions: P (st+1|st, at) is the state transition function that indicates
the state transferring from current state st to next state st+1 after taking action
at. Note that such updates on the raw states do not actually reflect the change of
user preference. This motivates us to learn a mapping from raw states to explicit
user preference representation. Please refer to Section 4.3 for details.

The optimal policy of the integrated ranking agent maximizes the system’s
total expected reward:

J = Eτ∼π

[
τ∑

t=0

γtrt(st, at)

]
, (1)

where γ ∈ [0, 1] is a discount factor and t ∈ τ is the discrete time step in the
trajectory τ .

In the integrated ranking scenarios, the dataset D may include various kinds
of user’s feedbacks of different types of items. The goal of offline reinforce-
ment learning is to learn a policy directly from D, in order to maximize the
expected cumulative discounted reward Equation (1). Actor-critic scheme is a
classical framework for solving MDPs dynamically. It maintains a parametric
Q-function, Qθ, and a parametric policy, πω(a|s). It alternates between pol-
icy evaluation, computing the Qπ that iterating the Bellman operator BπQ =
r + γEs′∼P (s′|s,a),a′∼π(a′|s′) [Q (s′,a′)], and policy improvement, improving the
policy π(a|s) by updating it towards actions that maximize the expected Q-
value. In this paper, we incorporate behavior regularization into the actor-critic
framework via a critic penalty and policy regularization to address the overesti-
mation and distribution shift. Details of training are illustrated in Section 4.5.

RLMixer 5

4 The Framework of RLMixer
4.1 Overview

Fig. 2. Overall architecture of the policy network in RLMixer.

The architecture of the policy network in RLMixer is presented in the Fig-
ure 2. In order to capture local information for decision-making at every single
step, we propose to maintain a sliding window that contains the current items
to be re-ranked, which can also be interpreted as the user’s current attention.
And then, the global context extraction (GCE) module is expected to extract
the context information from the original ranking list, the real-time preference
capturing (RPC) module is utilized to learn the real-time user preferences on
candidate items respectively. Finally, the user’s preference on candidate items is
concatenated together and fed into the RL module for policy execution.

In the following sections, we will take a sliding window size of 3 as an example
to elaborate on implementing the aforementioned modules and networks.

4.2 Global Context Extraction Module
In the training stage, we take the original ranking list L0 = [I1, I2, ..., In] as part
of the state information, where n is the total number of items in source lists. Let
Wt = [I3t+1, I3t+2, I3t+3] denote the candidate items inside the sliding window
Wt at time step t. As introduced in the section 3, the full state input consists
of the user information(e.g., age, gender, purchasing power, etc.), the original
ranking list L0, and candidate items Wt. Initially, we employ the input layer
to map the user information features to the user embedding vector euser, and
obtain the item embedding ei for each item Ii. Then we adopt the traditional
GRU cells to extract the contextual information from the original ranking list
through context feature extraction network µ, hi = GRU(ei), where GRU(·)
denotes the traditional GRU cell, hi denote the hidden state about item Ii.

6 J. Wang et al.

After feature extraction, we construct the overall embedded state information
ŝ = [euser, e3t+1, e3t+2, e3t+3, h1,h2, ...,hn] , and then feed it into the RPC
module to model the user’s real-time preferences toward different categories.

4.3 Real-time Preference Capturing Module
Preference Encoder ϕ The preference encoder employs the embedded state
information ŝ to model the user preference embedding matrices. Assume there
are C (i.e., 3 categories in our scenario) categorical lists that need to be reranked,
we have the user real-time preference overall matrix U = [U1,U2, ...,Uc] learned
by the network ϕ, where Uc ∈ Rdpref×demb is the User Preference Matrix related
to Category c respectively. The number of rows dpref is the preference depth
expected to be learned of the category, and the number of columns demb is the
embedding dimension of each preference aspect.
Item Encoder ψ At the same time, we employ an embedding network ψ to uti-
lize sliding window item embedding EWt = [e3t+1, e3t+2, e3t+3] to dig further fea-
tures of the items within the sliding window. We expect to extract profound item
features that are related to the its own categorical characteristics tightly through
the deep item embedding network. Then we have E′

Wt
= [e′3t+1, e

′
3t+2, e

′
3t+3] de-

note the item profound embedding, where e′i ∈ Rdemb .
Item-wise Preference Calculation Let Ci = Category(Ii) denote the cat-
egory type for each item Ii. We design the matrix multiplication Ei = UCi

e′i
between the user real-time preference UCi towards the corresponding category
of item Ii and the item profound embedding e′i, to capture the user preference
Ei ∈ Rdpref×1 towards the exactly candidate item. Then we feed the exact learned
state information

s = [E3t+1,E3t+1,E3t+3] (2)
to the reinforcement learning network to get the final prediction.

In conclusion, the real-time preference capturing module help to unify a com-
parable embedding scheme for different category items to benefit further devel-
opment in the reinforcement learning module.

4.4 Contrastive User Preference Modeling
To provide a supervision signal for strengthening the learning of user preferences,
we propose an auxiliary contrastive user preference loss. Inspired by the fact that
user has common interests among different items implicitly, we believe that items
clicked by the same user has common interests factor. Hence, we divide items in
the sliding window to two sets Sclicked and Sunclicked. We expect the similarity
between the user-item interests embedding of user clicked items and unclicked
items to be far away as much as possible, and of the same set items to be closed.
Then we optimize the contrastive loss:

LC(µ, ϕ, ψ) = −
∑

i∈Sclicked

∑
j∈Sunclicked

ed(Ei,Ej)∑
i,j∈Sclicked

ed(Ei,Ej) +
∑

i,j∈Sunclicked
ed(Ei,Ej)

(3)

,∀Ei,Ej ∈ {E3t+1,E3t+2,E3t+3}, where d is the similarity calculation function
such as the Euclidean distance or cosine similarity distance. We adopt the square
of Euclidean distance in our work.

With the help of the auxiliary contrastive user-item preference, we suppose
to learn representations of the user-item interests regardless of the category.

RLMixer 7

4.5 Conservative Offline Reinforcement Learning
We adopt the actor-critic framework in our RL module, which includes a policy
network π(ω) and a Q-function network Q(θ). Both networks inherit the output
of the RPC module as input, the learned state information s from Eq.(2). In order
to address the overestimation of the OOD actions, we extend the conservative
Q-learning [9] to our scenario with further policy divergence regularization.
Conservative Policy Evaluation: In consistent with the CQL, we penalize
the Q function at states in the dataset for actions not observed in the dataset.
Then the Q function associated with the current policy π is conservatively up-
dated by the following optimization function:

LQ(θ) = λ
(
Es∼D,a∼π(·|s)[Q(s,a)]− Es,a∼D[Q(s,a)]

)
+
1

2
Es,a,s′∼D

[(
Q(s,a)− B̂πQ(s,a)

)2
]
.

(4)

The B̂πQ(s,a) := r(s,a) + γQ′ (s′,a′) is the empirical bellman operator that
only backs up a single sample, where (s,a, s′) is a single transition from the
given dataset, a′ ∼ π(·|s′), Q′

θ is the target Q Network which has the same
structure of Qθ and is substituted by Qθ network periodically. The second term
in the Eq.(4) is the conventional loss that minimizes the squared error of the
target Q value and prediction Q value. Significantly, the first term in the Eq.(4)
enables a conservative estimation of the value function for learned policy to
mitigate the overestimation bias.
Conservative Policy Improvement with divergence penalty: The goal
of policy learning is to give prediction towards action that maximizes the ex-
pected Q value. With the help of a conservative critic Q, the policy network ω
is improved by the optimization function:

Lπ(µ, ϕ, ψ, ω) = −Es∼D,a∼π(·|s) [Q(s,a)] . (5)
In order to address the distributional shift challenge in the offline setting, we

utilize the following KL-Divergence loss as regularization.
LKL = E(s,a,r,s′)DKL(π(·|s)||πβ(·|s)). (6)

This regularization aims to constrain the bound of the state distributional shift
between the learned policy π(·|s) and the behavior policy πβ(·|s). However, the
behavior policy πβ(·|s) is often a mixture of multiple policies due to the complex
online logic. Note that in our scenario, the policy actually outputs a distribution
of categories at each time step. With this observation, we could recover an ap-
proximate behavior policy by simply calculating the distribution of categories in
the logged trajectories. Specifically, we calculate the overall category distribu-
tion from the real dataset q = [q1, q2, ..., qC]. We denote the category distribution
inferred from the training policy by p = [p1, p2, ..., pC]. Then we can reformu-
late the KL-regularizert as Equation 7. This reformulated regularizer implicitly
pushes our learned policy π(·|s) to be close to the behavior policy πβ(·|s).

LKL = DKL(p||q) (7)
Implementation Details During the training stage, the Q-function and policy
network are updated separately. We train the policy network with the GCE and
RPC module networks together through the gradient passed by the learned state

8 J. Wang et al.

information s while we stop the gradient of the input s for the Q-function network
training. In summary, we alternately train networks between the loss function
Eq.(4) and Eq.(8).

L = Lπ(µ, ϕ, ψ, ω) + αLC(µ, ϕ, ψ) + βLKL, (8)
where the α and β are the hyper-parameters to adjust the weight of each loss.

5 Experiments
We present both offline and online evaluation results of RLMixer. In the offline
evaluation, we compare RLMixer with existing baselines on the public PRM
datasets and industrial datasets collected from an industrial AppStore. In the
online experiments, we deploy RLMixer to provide re-ranking services to the
industrial AppStore and conduct online A/B testing.

5.1 Offline Experiment Setting
Datasets. We give a detailed description of the two datasets as follows.

PRM dataset. We adopt the public PRM dataset released by [13], which is
a large-scale dataset (E-commerce Re-ranking dataset) built from a real-world
E-commerce recommender system. The dataset includes a huge number of ses-
sions that record interactions between the recommender system and users. For
each session, features (e.g., category, identity, price, etc.) of a recommendation
list items recommended to a user and the corresponding user click-through re-
sponse are stored. To avoid significant variance, we keep the interactions between
the user and three main (i.e., most frequently presented) category items recom-
mended by the system with primal orders presented in the recommendation list,
which also matches the integrated ranking application scenario.

Industrial dataset. We collected a real-world dataset from an industrial
AppStore platform for 15 consecutive days. It contains similar user and item
features as the PRM dataset, with two additional high-level categories.

The statistics of two offline datasets are presented in the Table 1. We split
each dataset into training and test sets with a ratio of 4:1.

Table 1. Statistics of two offline datasets
Sessions Users Category A Category B Category C

PRM dataset 7,919,659 605,668 1,411,185 291,629 311,364
Industrial dataset 194,233 184,443 9,018 4,771 -

Baselines We compare RLMixer with the following representative methods.
Original. The primal recommendation list is presented in the original dataset.
MMR[1]. Maximal Marginal Relevance(MMR) is a ranking algorithm that

allows controlling the diversity and the relevance of provided information.
LinkedIn-Det[5]. LinkedIn-Det proposes several deterministic algorithms

for fair re-ranking of top-K results based on desired proportions over one or
more protected attributes.

DHCRS[3]. Deep Hierarchical Category-based Recommender System uti-
lizes a high-level DQN to select a category and then a low-level DQN to choose
an item in this category. Due to the order preservation constraints in our inte-
grated ranking scenario, we implement the category-level structure of DHCRS,
and add the KL-Divergence loss to make it more suitable to the offline setting.

RLMixer 9

Evaluation Metrics The aim of an optimal integrated ranking system is
to maximize the revenue for the platform. Accordingly, we adopt utility and
α−utility metrics to evaluate the performance of our method instead of NDCG.
Furthermore, as mentioned in section 5.1, the diversity or we call the ratio of each
category information, is also important to the integrated problem. We introduce
the ratio metric to make all algorithms fit into similar comparable levels.

NDCG@K (Normalized Discounted Cumulative Gain) is a measure of rank-
ing quality in information retrieval area. It evaluates the quality of the recom-
mendation list by calculating the fraction of Discounted Cumulative Gain (e.g.,
the click signal in our scenario) over the Ideal Discounted Cumulative Gain.

utility@K is the average utility of a session with regard to the top-K rec-
ommended items. The utility of a single item is related to the section 3, we then
formulate the calculation of utility@K as the Eq.(9).

utility@K =
1

|S|
∑
s∈S

K∑
i=1

price(Is,i) ∗ Click(Is,i), (9)

where S is the set of sessions, Is,i is the i-th recommended item in the session
s, Click(Is,i) is the click signal indicating whether the item Is,i is clicked.

α−utility@K is a metric that considers category information and evaluates
whether the utility is balanced among different categories,

α− utility@K =
1

|S|
∑
s∈S

K∑
i=1

αNcategory(Is,i) price(Is,i) ∗ Click(Is,i), (10)

where α is the discounted factor, and N(category(Is,i)) is the total counts of cate-
gory category(Is,i) appears in the session s.

ratio@K is used to evaluate the distribution of each category among all
items. The ratio among two categories Ci and Cj only is defined as follows:

ratio
i,j

@K =

∑
s∈S

∑K
k=1 I(category(Is,k) = Ci)∑

s∈S

∑K
k=1 I(category(Is,k) = Cj)

, (11)

where I is the indicator function.
To compute the evaluate the distribution of category when the number of

categories larger than two, we elaborate the rotate ratio to roughly represent
the average distribution in the following:

ratio@K =

∑|C|−1
i=1 ratioi,i+1 @K + ratio|C|,1 @K

|C|
, (12)

where C = C1, C2, ..., Cn is the set of n categories supposed to be constrained.

5.2 Offline Results and Analysis

Table 2. Evaluation on PRM dataset.

Top-10 ratio 2.3 ± 10%
NDCG utility α−utility ratio

original 0.5114 0.0339 0.0106 2.3124
MMR 0.4088 0.0386 0.0144 2.1436
LInkedINn-Det 0.4213 0.0354 0.0130 2.2883
DHCRS 0.4158 0.0385 0.0096 2.1522
RLMixer 0.4003 0.0471 0.0203 2.4239

Results on PRM dataset.
We conduct experiments with
our model and other baseline
models on the PRM dataset and
focus on the top-10 performance
of the recommendation list since
the average session length is
30. We first compute the basic

10 J. Wang et al.

statistics of the testing set, which is presented in the Table 2 as original base-
line. To evaluate variant methods fairly, we set the target desired ratio 2.3 during
model training, which is the approximation of the ratio metric in original rec-
ommendation among dataset. And then we select the best model according to
the utility performance of top-10 when the ratio of model predictions within the
range of 2.3±%10. The performance results are presented in the Table 2.
– Compared our RLMixer with other baselines, RLMixer outperforms them

in both utility and α−utility metrics, which is at least 22% and 44% higher
than others respectively.

– Considering both MMR and Linkedin-Det are ranking algorithm related to
balancing the diversity and utility, our RLMixer outperforms these two al-
gorithms even though we were bound into the same level ratio. It shows that
our algorithm can be applied to the scenario to earn profit much higher while
fulfilling the desired distribution requirements.

– We achieve better performance than DHCRS even though DHCRS is a RL-
based method and giving the category prediction first as well. This indicates
that our real-time user preference capturing module and corresponding aux-
iliary contrastive loss design might contribute a lot to the final prediction.
We will discuss this later in the ablation study.

– The NDCG value of the original list is the highest, but it brings the lowest
utility. The reason is that the computation of NDCG uses only click signals,
ignoring the real values of each click. Therefore, compared with NDCG, the
utility-related metrics better align with the online performance. This gives
us an intuition that pursuing the most clicks may not be the best strategy.

Table 3. Evaluation on Industrial dataset.

Top-20 ratio 0.5 ± 10%
NDCG utility α−utility ratio

Original 0.3659 3.056 1.152 0.5284
RLMixer 0.3455 3.108 1.341 0.5405

Results on industrial dataset.
Since users are presented with at least
7 items at a time, we compare top-20
results of RLMixer with the original
rank on the industrial dataset. Table 3
shows their performance comparisons. Similar to the PRM dataset, our RLMixer
leads to a lower NDCG value but is compensated by a 1.7% utility gain.

Table 4. Ablation study of contrastive user preference
modeling in RLMixers on PRM dataset.
Method Top-K NDCG utility α−utility ratio

RLMixer
3 0.2575 0.0246 0.0216 2.4061
5 0.3140 0.0302 0.0211 2.0444
10 0.4003 0.0471 0.0203 2.4239

RLMixer w/o
RPC

3 0.2585 0.0192 0.0159 2.3125
5 0.3144 0.0288 0.0166 2.5253
10 0.4010 0.0446 0.0151 2.4495

RLMixer w/o
Contrastive Loss

3 0.2564 0.0214 0.0171 2.1858
5 0.3123 0.0296 0.0165 1.9008
10 0.3997 0.0437 0.0150 2.1805

Ablation Study To
verify the impact of Real-
time Preference Captur-
ing(RPC) module and
the auxiliary contrastive
loss, we conduct two sets
of experiments on the
public dataset PRM. The
two sets of experiments
train RLMixer without
the entire RPC module
or auxiliary contrastive
loss, respectively. We still constraint the desired ratio within the range of
2.3±%10 during the model training, and we select the best model based on top-
10 performance. Then we evaluate top-3, top-5, and top-10 performance of the

RLMixer 11

best model of each RLMixer variant. As shown in the Table 4, the full RLMixer
comprehensively presents higher performance in utility and α−utility metrics of
all top-k levels, while compared with the variants without RPC module or auxil-
iary contrastive loss. Especially, it can be observed that the cooperation of RPC
module and auxiliary loss brings key improvements to the primal algorithm over
other baseline algorithms.

5.3 Online A/B test

Table 5. The results of A/B exper-
iments.
Policy Baseline RLMixer Impr
utility 0.0074 0.0077 4.05%

The online setting is follow that of offline
experiments, and the quantified criteria of
the A/B experiment is to compare the rev-
enue(i.e., utility) with the baseline in three
days. We deploy RLMixer online and compare its performance with the fine-
tuned rule-based model that is currently deployed online. Noted that the goal
of our method is to adjust the ratio to a certain target value while maximizing
the utility. Table 5 shows the regularized average utility obtained during three
consecutive days. We find that RLMixer achieves 4.05% utility gain compared
with the current model, which demonstrated the effectiveness of our method.

6 Conclusion
We propose a general offline RL framework with contrastive user preference mod-
eling called RLMixer for integrated ranking problems. With the aid of the Global
Context Extraction (GCE) module and Real-time Preference Capturing (RPC)
Module, RLMixer is able to synthesize values of items from different categories
and capture the user’s short-term preference shifting. Furthermore, it incorpo-
rates behavior regularization into the actor-critic framework to address the dis-
tribution shift problem that exists in the offline setting. We compare RLMixer
with existing baselines on the public PRM datasets and datasets collected from
an industrial AppStore. We also deploy RLMixer to provide re-ranking services
to an industrial AppStore and conduct an online A/B test, which shows that
RLMixer brings 4.05% utility gain.

References

1. Carbonell, J., Goldstein, J.: The use of mmr, diversity-based reranking for re-
ordering documents and producing summaries. In: Proceedings of the 21st annual
international ACM SIGIR conference on Research and development in information
retrieval. pp. 335–336 (1998)

2. Chen, M., Beutel, A., Covington, P., Jain, S., Belletti, F., Chi, E.H.: Top-k
off-policy correction for a reinforce recommender system. In: Proceedings of the
Twelfth ACM International Conference on Web Search and Data Mining. pp. 456–
464 (2019)

3. Fu, M., Agrawal, A., Irissappane, A.A., Zhang, J., Huang, L., Qu, H.: Deep re-
inforcement learning framework for category-based item recommendation. IEEE
Transactions on Cybernetics (2021)

4. Fujimoto, S., Meger, D., Precup, D.: Off-policy deep reinforcement learning with-
out exploration. In: International Conference on Machine Learning. pp. 2052–2062
(2019)

12 J. Wang et al.

5. Geyik, S.C., Ambler, S., Kenthapadi, K.: Fairness-aware ranking in search & rec-
ommendation systems with application to linkedin talent search. In: Proceedings
of the 25th acm sigkdd international conference on knowledge discovery & data
mining. pp. 2221–2231 (2019)

6. Guanjie, Z., Zhang, F., Zheng, Z., Xiang, Y., Yuan, N.J., Xie, X., Li, Z.: Drn: A
deep reinforcement learning framework for news recommendation. In: Proceedings
of the 2018 World Wide Web Conference. pp. 167–176 (2018)

7. Koutsopoulos, I.: Optimal advertisement allocation in online social media feeds. In:
Proceedings of the 8th ACM international workshop on hot topics in planet-scale
mObile computing and online social neTworking. pp. 43–48 (2016)

8. Kumar, A., Fu, J., Soh, M., Tucker, G., Levine, S.: Stabilizing off-policy q-learning
via bootstrapping error reduction. In: Advances in Neural Information Processing
Systems. pp. 11761–11771 (2019)

9. Kumar, A., Zhou, A., Tucker, G., Levine, S.: Conservative q-learning for offline
reinforcement learning. In: Advances in Neural Information Processing Systems.
pp. 1179–1191 (2020)

10. Levine, S., Kumar, A., Tucker, G., Fu, J.: Offline reinforcement learning: Tutorial,
review, and perspectives on open problems. arXiv preprint arXiv:2005.01643 (2020)

11. Liao, G., Wang, Z., Wu, X., Shi, X., Zhang, C., Wang, Y., Wang, X., Wang,
D.: Cross dqn: Cross deep q network for ads allocation in feed. arXiv preprint
arXiv:2109.04353 (2021)

12. Matsushima, T., Furuta, H., Matsuo, Y., Nachum, O., Gu, S.S.: Deployment-
efficient reinforcement learning via model-based offline optimization. In: Interna-
tional Conference on Learning Representations (2021)

13. Pei, C., Zhang, Y., Zhang, Y., Sun, F., Lin, X., Sun, H., Wu, J., Jiang, P., Ge, J.,
Ou, W., et al.: Personalized re-ranking for recommendation. In: Proceedings of the
13th ACM conference on recommender systems. pp. 3–11 (2019)

14. Wu, Y., Tucker, G., Nachum, O.: Behavior regularized offline reinforcement learn-
ing. arXiv preprint arXiv:1911.11361 (2019)

15. Xiao, T., Wang, D.: A general offline reinforcement learning framework for inter-
active recommendation. In: Proceedings of the 35th AAAI Conference on Artificial
Intelligence (2021)

16. Yan, J., Xu, Z., Tiwana, B., Chatterjee, S.: Ads allocation in feed via constrained
optimization. In: Proceedings of the 26th ACM SIGKDD International Conference
on Knowledge Discovery Data Mining. pp. 3386–3394 (2020)

17. Zhao, M., Li, Z., Bo, A., Haifeng, L., Yifan, Y., Chen, C.: Impression allocation for
combating fraud in e-commerce via deep reinforcement learning with action norm
penalty. In: Proceedings of the 27th International Joint Conference on Artificial
Intelligence. pp. 3940–3946 (2018)

18. Zhao, X., Gu, C., Zhang, H., Yang, X., Liu, X., Tang, J., Liu, H.: Dear: Deep
reinforcement learning for online advertising impression in recommender systems.
In: Proceedings of the 35th AAAI Conference on Artificial Intelligence. pp. 750–758
(2021)

19. Zhou, G., Mou, N., Fan, Y., Pi, Q., Bian, W., Zhou, C., Zhu, X., Gai, K.: Deep
interest evolution network for click-through rate prediction. In: Proceedings of the
AAAI Conference on Artificial Intelligence. pp. 5941–5948 (2019)

20. Zhou, G., Zhu, X., Chenru, S., Ying, F., Han, Z., Xiao, M., Yanghui, Y., Junqi,
J., Han, L., Gai, K.: Deep interest network for click-through rate prediction. In:
Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery Data Mining. pp. 1059–1068 (2018)

