
MTRec: Learning to Align with User Preferences via
Mental Reward Models

Mengchen Zhao1 Yifan Gao2 Yaqing Hou2∗ Xiangyang Li3 Pengjie Gu4

Zhenhua Dong3 Ruiming Tang3 Yi Cai1
1School of Software Engineering, South China University of Technology

2School of Computer Science and Technology, Dalian University of Technology
3Huawei Noah’s Ark Lab 4Nanyang Technological University

{zzmc, ycai}@scut.edu.cn {otz, houyq}@mail.dlut.edu.cn
{lixiangyang34, dongzhenhua, tangruiming}@huawei.com

Abstract

Recommendation models are predominantly trained using implicit user feedback,
since explicit feedback is often costly to obtain. However, implicit feedback, such
as clicks, does not always reflect users’ real preferences. For example, a user
might click on a news article because of its attractive headline, but end up feel-
ing uncomfortable after reading the content. In the absence of explicit feedback,
such erroneous implicit signals may severely mislead recommender systems. In
this paper, we propose MTRec, a novel sequential recommendation framework
designed to align with real user preferences by uncovering their internal satisfac-
tion on recommended items. Specifically, we introduce a mental reward model
to quantify user satisfaction and propose a distributional inverse reinforcement
learning approach to learn it. The learned mental reward model is then used to
guide recommendation models to better align with users’ real preferences. Our
experiments show that MTRec brings significant improvements to a variety of
recommendation models. We also deploy MTRec on an industrial short video
platform and observe a 7% increase in average user viewing time.

1 Introduction

In interactive recommender systems, explicit feedback (e.g., ratings) is inherently sparse. Conse-
quently, recommendation models predominantly rely on implicit signals (e.g., clicks) for training.
However, such signals frequently fail to capture users’ real preferences. For instance, clicking on a
video may not indicate satisfaction with its content, while skipping a video could stem from prior
exposure to similar content on other platforms rather than genuine dislike. These observations
highlight a fundamental misalignment between recommendation models and users’ real preferences.

To mitigate such misalignment caused by erroneous feedback signals, a natural approach is to
incentivize users to provide explicit feedback. However, in real-world scenarios, users exhibit low
propensity to offer such feedback due to cognitive burdens and interface constraints. Prior studies treat
erroneous feedback signals as noisy labels and applying denoising techniques to address them, yet
their effectiveness remains limited because erroneous feedback is not random noise by its nature Wang
et al. [2021]. Some alternative methods attempt to mitigate erroneous feedback via multi-feedback
fusion, yet they often struggle when confronted with conflicting feedback Chen et al. [2021a]. Overall,
existing works focus on data mining approaches, lacking a deep understanding of the mismatch
between users’ implicit feedback and their real preferences.

∗Corresponding author.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

In this work, we aim to quantify and uncover users’ internal satisfaction with recommendations,
thereby bridging the gap between the recommendation model and users’ real preferences. In fact,
each time user takes an action (e.g., consume an item), a private feeling will be generated in her mind,
telling how she is satisfied by taking the action. We summarize such private feeling as mental reward.
We have following two observations on the mental reward. O1: The mental reward will influence
user’s short-term interests and her subsequent behaviors. For example, if an user clicked on a news but
felt uncomfortable with the content, she would lose interests on that topic and probably not click on
similar news again. O2: Users are maximizing their accumulated mental rewards. This is reasonable
because users naturally pursue good experiences during interaction with the recommender system.
The above observations indicate that mental reward plays an important role in user’s sequential
decision making. If we can directly optimize user’s mental rewards, the recommendation model
would be better aligned with users’ real preferences.

To this end, we propose MTRec, a novel sequential recommendation framework which uses a learned
Mental Reward Model to guide the recommendation model to align with users’ real preferences.
First of all, we model the user’s decision making as a Markov Decision Process (MDP). With
the assumption that the user always maximizes her accumulated mental rewards, we use Inverse
Reinforcement Learning (IRL) to infer a mental reward function from users’ behavioral data. However,
plain IRL recovers a deterministic mental reward function, which fails to capture the random nature
of the mental rewards. To address this, we propose a Quantile Regression Inverse Q-Learning
(QR-IQL) approach to learn a distributional mental reward function, which maps a state-action pair
to a distribution of mental rewards. Hence, we use the rewards predicted by the mental reward model
as complementary supervision signals to guide the training of recommendation model. In such a way,
the misalignment between recommendation model and user’s real preferences can be greatly reduced.
Experiments on two public datasets show that MTRec significantly improves the performance of
several popular recommendation models, in terms of Area Under Curve (AUC) and Normalised
Capped Importance Sampling (NCIS). We also test MTRec in Virtual Taobao to demonstrate its
effectiveness on reinforcement learning based recommendation models. Moreover, we deployed
MTRec in a real-world industrial short video recommendation platform and observed a 7% increase
in average user viewing time over a 7-day period during the online A/B test.

Our main contributions are summarized as follows.

• We identify the misalignment problem in sequential recommendation, where erroneous user
feedback could severely deviate recommendation model from users’ real preferences.

• We introduce MTRec, a novel sequential recommendation framework that aims to bridge
the gap between the recommendation model and users’ real preferences by a learned mental
reward model, which uncovers users’ internal satisfaction with recommendations.

• To capture the random nature of the mental rewards, we develop a distributional variant of
IRL called QR-IQL to learn the mental reward model. We show how to use the learned
mental reward model to guide the optimization of sequential recommendation models.

• We conducted extensive offline and online experiments to demonstrate the improvements
brought by MTRec. Additionally, we deployed MTRec in a real-world industrial short video
recommendation platform and observed a significant increase in user engagement.

2 Related Works

Implicit user feedback in recommendation. Since explicit feedback is very sparse, industrial
recommender systems rely on implicit feedback (e.g., click, video watching) to train recommendation
models Covington et al. [2016], Zhou et al. [2018], Dai et al. [2021], Yang et al. [2021]. However,
these models ignore the fact that implicit feedback may not reflect users’ real preferences. Some
works treat such erroneous feedback as random noise and try to eliminate its influence via denoising,
yet these methods have limited accuracy because it is hard to distinguish it from genuine responses
Yu and Qin. [2020], Wang et al. [2021]. Another line of works address various types of biases in user
feedback, including position bias, selection bias, popularity bias and exposure bias woong Lee et al.
[2021], Yi et al. [2023]. However, errors in implicit user feedback differ from the aforementioned
biases. In some sense, such errors can be regarded as a certain type of inductive bias Jiawei et al.
[2023], because implicit feedback is wrongly assumed to reflect users’ real preferences.

2

AI alignment through reward model. Emerging from Natural Language Processing, alignment
algorithms have proven effective due to their ability to guide Large Language Models (LLMs) in
matching human values. Many popular alignment methods employ a reward model to provide
fine-tuning signals. For example, Reinforcement Learning from Human Feedback (RLHF) learns
human preferences through a reward model trained with human-rated outputs Ouyang et al. [2022].
Reward rAnked FineTuning (RAFT) uses a reward model to select the best set of training samples
based on model outputs Dong et al. [2023]. Inspired by these works, we aim to learn a reward model
to guide recommendation models in aligning with users’ real preferences. Unlike prior approaches
that rely on human annotators to provide reward model labels, our reward model is directly learned
from existing user behavioral data, making it more industry-friendly.

RL and IRL for sequential recommendation. Sequential recommendation is typically modeled as
interactions between users and recommender systems. Prior works have explored using reinforcement
learning (RL) to optimize recommendation policy, where the recommender system is modeled as
an agent and the users are treated as key components of environment Chen et al. [2019], Zheng
et al. [2018]. RL-based methods have great potential to maximize recommender systems’ long-term
revenue, but they often suffer from the bias of user simulators. Inverse RL (IRL) aims to recover the
agent’s reward function from expert trajectories. Some works apply IRL to infer the reward function
for the recommender system, assuming expert recommendation policies are available Chen et al.
[2021b], Liu et al. [2023a]. However, these works ignore that the users are also active agents, and
understanding user behaviors is essential for improving recommendation policies. In our work, we
model users as agents and use IRL to infer the optimal reward model from their behaviors. Although
similarly employing IRL techniques, our work differs fundamentally from existing works by inferring
a user-centric reward model, as opposed to system-centric reward modeling.

3 Preliminaries

Sequential recommendation. Typically, a sequential recommendation model takes a sequence of
user-item interactions as input and predicts the next items that mostly attract the users. Due to the
lack of explicit feedback, sequential recommendation tasks are usually formulated as predicting the
next item that is most likely to induce target user behaviors such as clicks:

it = argmax
i∈I

pϕ(â|i, ht−1), (1)

where â represents user’s behavior to be predicted, I = {i1, ..., iN} is the set of candidate items. The
parameterized function pϕ measures the probability of the target behavior â. The interaction history
ht consists of a list of tuples up to time step t, where each tuple < u, i, a >t consists of a user u, an
item i and the user’s action a ∈ A. In a simplified case, user’s action space A can be restricted to
{click, skip}, hence the recommendation task is reduced to predicting the user’s click-trough rate.

Inverse reinforcement learning. Conventionally, maximum entropy IRL aims to learn a deterministic
reward function r : S ×A→ R by solving Problem 2 Brian et al. [2008].

max
r∈R

min
π∈Π

EπE
[r(s, a)]− Eπ[r(s, a)]−H(π), (2)

whereH(π) ≜ Eπ[− log π(a|s)] denotes the entropy of policy π. Intuitively, this formulation learns
a reward function that assigns high reward to the expert policy πE and a low reward to other policies,
while searching for the optimal policy under the reward function in the inner loop. The expectation
over policies can be replaced by the occupancy measure ρπ(s, a) = π(a|s)

∑
t γ

tP (st = s|π),
which specifies a probability distribution over (s, a) pairs. Then, Problem 2 can rewritten as:

max
r∈R

min
π∈Π

EρE
[r(s, a)]− Eρ[r(s, a)]−H(π)− ϕ(r), (3)

where ϕ is a convex regularizer on r Jonathan and Ermon [2016]. If we define the reg-
ularizer as ψ(x) = x − ϕ(x), then EρE

[r(s, a)] − ϕ(r) can be compactly represented by
EρE

[ψ(r(s, a))]. Moreover, the reward function r can be represented by the soft Q-function as

3

r(s, a) = Q(s, a) − γEs′∼P (s,a)V (s′), where V (s) = Ea∼π(·|s)[Q(s, a) − log π(a|s)]. Also the
optimal policy π∗ can be represented by the soft Q-function as π∗(a|s) = 1

∆(s) exp(Q(s, a)), where
∆(s) =

∑
a′ exp(Q(s, a′)) is the normalization factor. Then, the inner problem becomes trivial so

that Problem 3 can be reformulated as follows Brian et al. [2008], Haarnoja et al. [2018].

max
Q∈Ω

Es,a∼ρE
[ψ(Q(s, a)− γEs′∼P (s,a)V

∗(s′))]− (1− γ)Es0∼ρ0 [V
∗(s0)], (4)

where V ∗(s) = log
∑

a expQ(s, a). Note that the objective of Problem 4 depends only on Q, which
allows us to solve the problem by directly optimizing a Q-network. Solving Problem 4 with the
expert data DE results in the optimal Q-function, and the deterministic rewards can be recovered by:

r(s, a) = Q(s, a)− γEρE
[log

∑
a

expQ(s′, a)], (5)

The misalignment problem in recommendation. In the context of LLM, the alignment problem is
defined as optimizing the outputs of LLMs towards matching human values Ouyang et al. [2022]. For
recommender systems, the general goal is to maximize users’ satisfaction by selecting appropriate
items for them. This is naturally in accord with the alignment problem in LLMs, in the sense
that aligning with human values is similar to aligning with user preferences. However, directly
maximizing user satisfaction is very challenging for recommender systems. Therefore, most existing
works focus on optimizing some surrogate objectives such as click-through rate and conversion rate
Wang et al. [2017], Zhou et al. [2019]. Although the surrogate objectives make it convenient to
optimize recommendation models, they suffer from inductive biases since users’ implicit feedback
may not reflect their real preferences. As a consequence, the optimization goal of recommendation
models may deviate from users’ real preferences. Compared with one-shot recommendation, the
misalignment problem in sequential recommendation is even worse due to the accumulation of errors.

Inspired by recent advances in LLM alignment, we aim to develop a reward model that helps to align
recommendation models with users’ real preferences. The challenges are two-fold. First, we do not
have an off-the-shelf reward model that reflects users’ real preferences, under the lack of their explicit
feedback. To address this, we propose the Mental Reward model learned from rich user behavioral
data to approximate their real preferences. Second, unlike static human values, users’ preferences
could be highly stochastic, potentially due to unpredictable environmental factors and preference
shifts. To resolve this, we propose a distributional Inverse RL approach to capture the randomness of
the mental reward model, which will be illustrated in Section 4.

4 Method

Motivation. User behaviors have been extensively studied in the literature of recommender
systems. However, existing works treat user behaviors as labels for recommendation models. In fact,
during the interaction with recommender systems, users are active agents rather than static label
providers. Moreover, users are implicitly maximizing their own reward functions by taking actions in
recommender systems. Based on the above insights, we believe that uncovering the user’s reward
function would significantly benefit recommendation models in aligning with users’ real preferences.

Overview. We propose a MenTal reward based Recommendation framework MTRec, which consists
of three main parts. First, we introduce a novel User-Centric Markov Decision Process, where uses
are modeled as active agents during their interaction with recommender systems. Second, we develop
a distributional IRL method called Quantile Regression Inverse Q-learning (QR-IQL) for learning the
mental reward model. Last, we show how to use the learned mental reward model to guide existing
recommendation models to align with users’ real preferences.

4.1 User-Centric Markov Decision Process

Reinforcement learning has been applied to model the interaction between users and recommender
systems. Existing works usually model the recommender system as agent, who recommends items
and receives user feedback as reward Zheng et al. [2018], Chen et al. [2019]. However, they often

4

Recommendation
Model𝒂𝒂𝒕𝒕

𝒔𝒔𝒕𝒕+𝟏𝟏
User Policy

𝒔𝒔𝒕𝒕

Mental Reward
Model

𝒓𝒓𝒕𝒕

Interaction Data

Figure 1: The overall framework of MTRec. The solid lines represent the interaction process. The
dashed lines represent the information flow between data and models. Our goal is to recover the
mental reward model and use it to improve the recommendation model.

ignore the strategic behavior of the users. In this work, we focus on studying users’ behaviors, whose
decision making can be modeled as a Markov Decision ProcessM = ⟨S,A, P,R, π⟩:

• S denotes the state space. A state st = (ht, it) includes the interaction history up to time t.
At each time step, the interaction is recorded by a tuple < u, i, a >t, consisting of an user u,
displayed item i and the user’s action a.

• A denotes user’s action space. An action a ∈ A represents user’s response to the item
displayed to her. User’s responses could be of various types, including explicit feedback
such as news clicks and video watchings. In this work, we consider a general case where
users’ responses are either positive or negative, leading to a simplified action space.

• P : S × A → S denotes the transition function. Following existing works on sequential
recommendation Zhou et al. [2018, 2019], Wang-Cheng and McAuley [2018], after an user
takes an action, a new state st+1 = st ∪ {ht+1, it+1} will be generated.

• R : S ×A→ θ(r) denotes the mental reward function which maps a state and an action to
a distribution of mental reward r ∈ R. Note that we model the mental reward r as a random
variable instead of a deterministic value, since r could be influenced by unpredictable
environmental factors and preference shifts. Such a modeling allows us to capture the
intrinsic randomness and potentially richer information on user’s mental rewards.

• π : S → µ(a) denotes the user’s behavioral policy, which maps a state to a distribution over
actions. A stochastic user policy facilitates reasoning her reward function using IRL.

Figure 1 illustrates the interaction process between user and recommendation model. At each round,
the user receives a recommended item and select an action to respond. After that, a mental reward
that summarizes user’s satisfaction about the current item is generated. Note that the mental reward is
highly correlated with user’s real preference, but is unknown to the recommendation model. However,
the mental reward will influence the user’s subsequent behaviors as she seeks to maximize the
accumulated mental rewards. We will focus on estimating the mental rewards in the following parts.

4.2 Uncovering the Mental Reward Model

Inverse reinforcement learning (IRL) aims to find a reward model that explains behaviors of the expert
policy Saurabh and Doshi [2021]. Since the user naturally maximizes her mental rewards, her policy
can be regarded as the expert policy. Therefore, IRL could be used to recover the mental reward
model using the interaction data. However, existing IRL methods focus on deterministic reward
models, which fail to capture the intrinsic randomness of the user’s mental rewards. To this end, we
will develop a distributional version of IRL algorithm for uncovering the mental reward model.

4.2.1 A distributional perspective on IRL

Conventional IRL methods such as MaxEntIRL iteratively optimize the reward function and the policy
until convergence Brian et al. [2008]. Bayesian IRL methods assume that there are multiple reward

5

functions and focus on estimating their posterior distribution using Bayes’ rule Deepak and Amir
[2007], Jaedeug and Kim [2012]. Although Bayesian IRL methods introduce various distributions
over reward functions, they are still restricted to deterministic reward functions. By contrast, we aim
to learn a distributional reward function where the reward can be stochastic.

Since we model the user’s mental reward r as a random variable, Equation 5 can be rephrased using a
distributional operator as

T πr(s, a) :
D
= Q(s, a)− γEρE

[log
∑
a

expQ(s′, a)],

where X :
D
= U denotes equality of probability laws, that is, the random variable X is distributed

according to the same law as U . As each Q(s, a) function uniquely determines a distribution of
r(s, a), learning a distributional reward function is reduced to learning a distributional Q-function.

4.2.2 Quantile Regression Inverse Q-learning (QR-IQL)

Problem 4 aims to learn a deterministic Q-function, while we aim to learn a distributional Q-
function. Following the QR-DQN Will et al. [2018], the distribution of Q can be characterized by
a quantile distribution. We denote by Z the variable associated with the distribution of Q, that is,
Q(s, a) = E[Z(s, a)]. Let λ : S × A → RN be a parametric model, where N is the number of
quantiles. Then a quantile distribution Zλ maps a state-action pair (s, a) to a uniformly probability
distribution supported on {λi(s, a)}Ni=1. Instead of learning a scalar value Q(s, a), our model will
estimate the positions of supports {λi(s, a)}Ni=1 and calculate Qλ(s, a) as:

Qλ(s, a) =
1

N

N∑
i=1

λi(s, a).

Recall that in Problem 4, we optimize a Q-network that outputs a scalar Q-value. In order to learn
the distributional Q-function, we change the output layer of the Q-network to be of size |A| ×N .
To derive the objective for the quantile regression inverse Q-learning, we made two modifications
on Problem 4. First, since our mental reward model is learned from offline data, the second term
in Problem 4 (i.e., (1− γ)Es0∼ρ0 [V (s0)]) can be replaced by E(s,a)∼ρE

[V (s)− γV (s′)]. In other
words, Es0∼ρ0

[V (s0)] is irrelevant with the initial state distribution ρ0. Second, as is suggested in
Garg et al. [2021], we choose the regularizer as ψ(x) = x − 1

4αx
2 for the ease of optimization

while bounding the rewards. Finally, we formulate the objective of the quantile regression inverse
Q-learning as Problem 6. The complete derivation is provided in Appendix A.1.

max
Qλ

EρE
[Qλ(s, a)− log

∑
a

expQλ(s, a)]−
1

4α
EρE

[(Qλ(s, a)− log
∑
a

expQλ(s
′, a))2], (6)

We apply the Pinball loss to get the optimal quantile distribution supports {λi(s, a)}Ni=1 and the
optimal Q∗

λ, which we can use to calculate the mental rewards as:

r∗(s, a) = Q∗
λ(s, a)− γEρE

[log
∑
a

expQ∗
λ(s

′, a)]. (7)

Detailed optimization algorithm is provided in Appendix A.2. While building upon ideas from
QR-DQN for RL, our QR-IQL is the first distributional IRL algorithm that uncovers the underlying
distribution of rewards, which is key to capture the randomness of users’ mental rewards.

4.3 Applications of the Mental Reward model

Generally, a sequential recommendation model takes user features, candidate item features,
interaction histories and some contextual features as input, and output a score for the candidate item
used for ranking. For the sake of brevity, we represent the recommendation model as Fζ(it|ht),
which is parameterized by ζ. Although the mental reward model r(s, a) indicates users’ preferences
to some extent, it lacks sufficient feature-level modeling and thus cannot be directly used for
recommendation. Instead, we use r(s, a) to provide additional learning signals for recommendation
models, However, combining r(s, a) with existing recommendation models is non-trivial due to the

6

variety of learning objectives. Fortunately, these objectives fall into several categories. We will use
the following two typical examples to illustrate how to use the mental reward model in practice.

Classification-based models. Many sequential recommendation tasks are formulated as binary
classification problems with the following Cross Entropy loss:

LCE(ζ) = −EDE [aP log(Fζ(i|h)) + aN log(1− Fζ(i|h))], (8)

where aP = 1 and aN = 0 indicate user’s positive and negative responses, and Fζ(i|h) represents the
estimated probability of clicking on item i based on history h. We want the recommendation models
to also maximize the expectation of user’s mental rewards, leading to the following alignment loss:

LAlign(ζ) = −EDE
[r∗(s, aP) · Fζ(i|h) + r∗(s, aN) · (1− Fζ(i|h))], (9)

Then, the final loss for training the recommendation model can be written as a weighted combination
of the two losses:

LFinal(ζ) = LCE(ζ) + κ · LAlign(ζ). (10)

RL-based models. In a typical setting, the recommender system is modeled as an agent, who
maximizes the accumulated system rewards. We denote by r̂(h, i, a) the system reward after recom-
mending item i and receiving user feedback a given interaction history h. In this context, Fζ(i|h)
represents the RL-based recommendation policy, whose goal is to maximize the expectation of
accumulated rewards r̂:

LRL(ζ) = −Eit∼Fζ
[
∑
t

r̂(ht−1, it, at)] (11)

Since we want the recommendation model to also maximize the mental rewards of the user. We
simply add the mental reward r∗ to r̂ and obtain the following objective.

LFinal(ζ) = −Eit∼Fζ
[
∑
t

r̂(ht−1, it, at) + κ · r∗(ht−1, it, at)] (12)

See Appendix A.3 for more implementation details.

5 Experiments

In this section, we report the performance of MTRec in both offline and online settings, with focuses
on answering the following research questions (RQs).

• (RQ1:) How does MTRec improve classification-based recommendation models?
• (RQ2:) How does MTRec improve RL-based recommendation models?
• (RQ3:) Does the learned mental reward model provide useful information?
• (RQ4:) How does MTRec perform in online A/B test?

5.1 Experiments on Public Datasets (RQ1)

Datasets. The Amazon dataset McAuley et al. [2015] collects user review data from Amazon
e-commerce platform. We use two subsets of the Amazon dataset: Books and Electronics in our
offline experiments. More details on processing the datasets are provided in Appendix A.4.

Baselines. We use eight widely used recommendation models as baselines and combine each of
them with MTRec to test the improvements brought by MTRec. Wide&Deep Cheng et al. [2016]
is a hybrid recommendation model combining a wide linear model and deep neural network for
collaborative filtering. PNN Qu et al. [2016] is a neural network architecture designed for CTR
prediction in recommender systems. DeepFM Guo et al. [2017] is a hybrid recommendation model
combining factorization machines and deep neural networks. SASRec Wang-Cheng and McAuley
[2018] uses the self-attention mechanism to model sequential patterns for recommendation systems.
DIN Zhou et al. [2018] is an attention-based neural model for sequential recommendation, where
the attention mechanism aims to distinguish the interest of a user’s historical behaviors. DIEN
Zhou et al. [2019] designs a sequential architecture to model interest evolution for recommendation,

7

which uses an auxiliary loss to capture temporal interests. LinRec Liu et al. [2023b] is a lightweight
linear recommendation model designed for efficient computation and scalability with large datasets.
SIGMA Liu et al. [2024] is a sequential recommendation model that uses a selective gating
mechanism to focus on the most relevant user behaviors for improved performance.

Evaluation metrics. We use the following two metrics: Area Under Curve (AUC) Fawcett [2006]
and Normalised Capped Importance Sampling (NCIS) Swaminathan and Joachims [2015]. AUC is
used to measure the model’s ranking ability and NCIS is used to approximate the model’s online
performance Gilotte et al. [2018]. Formally, the score of NCIS can be calculated by:

J̃NCIS(M) =

∑n
i=1 ρ̃i(M) ∗ Li∑n

i=1 ρ̃i(M)
,

where ρi(M) =
∏

t∈T pt(M) is the probability that the CTR model M follows the request
trajectory of the user i, pt(M) is the click-through rate estimate of modelM for item t and n is the
number of users in the test set for NCIS. In the experiments, we use the complete trajectories of 10%
of users to calculate NCIS. Moreover, we obtain the final NCIS score by substracting the NCIS of the
untrained model from that of the trained model to eliminate the impact of random parameters among
different models. Intuitively, J̃NCIS(M) awards a CTR model with a high score if the model has
large probability to follow long trajectories.

Model Electronics Books
AUC NCIS AUC NCIS

Wide&Deep 0.8290 0.6749 0.8605 2.0967
Wide&Deep-IRL 0.8342 0.8738 0.8661 3.1264
Wide&Deep-MTRec 0.8351 0.9063 0.8657 3.2043
PNN 0.8396 0.6618 0.8603 2.3316
PNN-IRL 0.8547 0.9297 0.8673 3.4567
PNN-MTRec 0.8542 0.9515 0.8679 3.4971
DeepFM 0.8424 0.6993 0.8634 2.3146
DeepFM-IRL 0.8458 0.8542 0.8715 3.7296
DeepFM-MTRec 0.8468 0.8961 0.8742 3.7904
SASRec 0.8325 0.8243 0.8675 3.1755
SASRec-IRL 0.8366 0.8681 0.8681 3.1946
SASRec-MTRec 0.8328 0.8833 0.8798 3.4634
DIN 0.8523 0.6044 0.8653 2.1324
DIN-IRL 0.8533 0.8168 0.8701 3.1675
DIN-MTRec 0.8542 0.8728 0.8732 3.2208
DIEN 0.8448 0.7766 0.8686 2.2685
DIEN-IRL 0.8461 0.8857 0.8723 3.0476
DIEN-MTRec 0.8472 0.9324 0.8757 3.1185
LinRec 0.8579 0.8077 0.8754 2.4653
LinRec-IRL 0.8597 0.9365 0.8771 3.8005
LinRec-MTRec 0.8594 0.9782 0.8792 3.7928
SIGMA 0.8581 0.7946 0.8762 2.3975
SIGMA-IRL 0.8592 0.9261 0.8802 3.7556
SIGMA-MTRec 0.8604 0.9563 0.8814 3.8025

Table 1: Experimental results on Amazon datasets.

Results on Amazon datasets. Table 1 summa-
rizes the experimental results on the two Ama-
zon datasets. The suffix “IRL" indicates that
the mental reward model is learned by a non-
distributional IRL algorithm IQ-Learn Garg et al.
[2021], while the suffix “MTRec" indicates that
the mental reward model is learned by our algo-
rithm QR-IQL. It can be observed that integrat-
ing MTRec with existing models consistently
improves their AUC and NCIS across almost all
baseline models. Moreover, the improvements
on NCIS are generally more significant than
AUC. This aligns with the motivation of MTRec,
that is, to maximize overall user satisfaction and
long-term engagement. Note that the AUC is
also slightly improved, demonstrating that the
improvement of users’ long-term engagement is
not at the sacrifice of the model’s ranking ability.
In addition, the comparisons between IRL and
MTRec demonstrates the benefit of learning a
distributional version of mental reward model.

5.2 Experiments on Virtual Taobao (RQ2)

In this set of experiments, we choose RL-based recommendation models as our baselines and
combine them with MTRec to test their performance. Both training and testing of the algorithms are
conducted in simulated interactive recommendation environments on Virtual Taobao Shi et al. [2019].
We construct an expert dataset containing 100,000 high-quality trajectories by recording trajectories
with averaged CTR>0.5. After training the mental reward model using the expert data, we add the
predicted mental rewards to the original rewards and train the baselines again.

Baselines. Virtual Taobao allows training recommendation policies by RL. We use Proximal Policy
Optimization (PPO) Schulman et al. [2017] and Soft Actor-Critic (SAC) Haarnoja et al. [2018] as
baselines. According to Equation 12, RL-based recommendation models can be adjusted by simply
adding the mental rewards to the base rewards rfinal = renv + κ · rmental. In Virtual Taobao, renv
is provided by a pre-trained user model. We set κ = 0.2 for trade-off between the two reward signals.

8

0 10000 20000 30000 40000 50000
Steps

0.0

0.2

0.4

0.6

0.8

C
T
R

PPO
PPO-MTRec

0 500 1000 1500 2000
Steps

0.0

0.2

0.4

0.6

0.8

1.0

C
T
R

SAC
SAC-MTRec

Figure 2: Training curves of RL models. Averaged CTR is reported with 95% confidence interval.

2.5 5.0 7.5 10.0
Steps

-0.22

-0.21

-0.20

-0.19

-0.18

-0.17

-0.16

-0.15

M
en

ta
l R

ew
ar

d

(a)

1.0 0.5 0.0 0.5
r * (s, aP|areal = aP)

0.0

0.1

0.2

0.3

0.4

0.5

Pr
op

or
tio

n

(b)

1.00 0.75 0.50 0.25 0.00
r * (s, aN|areal = aP)

0.0

0.1

0.2

0.3

(c)

1.0 0.5 0.0 0.5
r * (s, aP|areal = aN)

0.0

0.1

0.2

0.3
(d)

1.00 0.75 0.50 0.25 0.00
r * (s, aN|areal = aN)

0.0

0.2

0.4

0.6

0.8 (e)

Figure 3: Illustrations of the predicted mental rewards. (a) Averaged mental rewards by steps in all trajectories;
(b-e) Expected and counterfactual mental rewards given actual user actions.

Evaluation metric. The major evaluation metric used in Virtual Taobao is the episodic Click-
Through-Rate (eCTR) during the simulated online interaction. The eCTR is calculated as:

eCTR =
repisode

10 ∗Nstep
,

where 10 is the number of items recommended in a single page, repisode is the total number of clicks
in an episode and Nstep is the total number of steps.

Results on Virtual Taobao. From Fig 2 we can see that the baselines attain average CTRs of
0.5435 and 0.7055 respectively. By incorporating the mental rewards during training, PPO and SAC
show significantly improved performance at average CTRs of 0.678 and 0.909 respectively. This
demonstrates that the mental rewards provide more useful information about users’ real preferences
and successfully boost the performance of RL-based recommendation models.

5.3 Evaluation of the Mental Reward Model (RQ3)

It is almost impossible to evaluate the learned mental reward model directly due to the lack of ground-
truth mental reward labels. Yet, we evaluate the mental reward model indirectly by its correlation
with the datasets. First, we calculate the averaged mental rewards at different steps in all trajectories.
Figure 3 (a) shows the results of the first ten steps on Amazon Book dataset. We can see that the
averaged mental rewards decrease obviously with the increase of steps. This result aligns with our
intuition that users may get tired and receive less mental rewards during their interaction with the
recommender system.

Second, we visualize the distribution of the mental rewards conditioned on the users’ real responses.
For instance, Figure 3 (b) and (c) show the distributions of expected mental reward r∗(s, aP |areal =
aP) and the counterfactual mental reward r∗(s, aN |areal = aP) when the users take a positive
action areal = aP . Specifically, r∗(s, aP |areal = aP) represents the predicted user’s mental reward
after she takes action aP , while r∗(s, aN |areal = aP) represents the counterfactual mental reward
if she had taken a negative action aN . Intuitively, an user should receive a relatively high reward
for the action she actually taken (a high r∗(s, areal|areal)). Yet, the experimental results show that
a non-negligible proportion of r∗(s, areal|areal) is relatively low, which suggests that there is a
mismatch between users’ actions and their real preferences (recall the example in the abstract: a user

9

might click on a news article because of its attractive headline, but end up feeling uncomfortable after
reading it). These observations indirectly validate the effectiveness of the mental reward model.

5.4 Online A/B test on Industrial Platform (RQ4)

To further validate the effectiveness of MTRec, we deploy it on an industrial short-video
recommendation platform, which has tens of millions of Daily Active Users (DAU). Short-video
recommendation is a typical sequential recommendation scenario, where the goal is to improve the
user engagement with the platform. The baseline model is a Deep Cross Network (DCN) Wang et al.
[2017], which is trained using binary labels indicating whether the users click on videos. However,
intuitively, clicking on a video does not necessarily mean that the user is satisfied after watching the
video. Therefore, we expect that MTRec could help to improve the overall users’ satisfaction on the
recommended videos and hence improve their engagement.

1 2 3 4 5 6 7
Days

500

600

700

800

900

1000

vi
ew

in
g

tim
e

(s
)

DCN
DCN-MTRec

Figure 4: Online A/B test results.

We improve the DCN model by incorporating the align-
ment loss, as illustrated in Equation 10. We find that
the averaged video viewing time stably improve by
about 7% compared with the baseline model, which
demonstrates that MTRec indeed improves the overall
recommendation quality and leads to better user en-
gagement. Note that MTRec is quite industrial friendly
because of two reasons: (1) the dataset used to train
MTRec could be same with that used to train the recom-
mendation model; (2) we only need to add an auxiliary
alignment loss to the original recommendation loss.

6 Conclusions

The general goal of recommender systems is to satisfy users by providing items that align with their
real preferences. However, existing works focus on optimizing surrogate objectives based on users’
implicit feedback, ignoring that the implicit feedback may not accurately reflect their real preferences.
Consequently, recommendation models could be systematically biased. In this work, we aim to fill
this gap by studying the users’ behaviors and uncovering the distribution of their mental rewards. We
propose a novel distributional IRL algorithm to learn the mental reward model and use it to guide the
training of recommendation models. Finally, we validate the effectiveness of MTRec via both offline
and online experiments, including the A/B on an industrial short video recommendation platform. In
the end, we believe that existing studies on user modeling are far from totally understanding users.

Acknowledgements

This research is supported by Guangdong Basic and Applied Basic Research Foundation
(2025A1515010247), and the Fundamental Research Funds for the Central Universities
(2024ZYGXZR069).

10

References
Ziebart Brian, Andrew Maas, Andrew Bagnell, and Anind Dey. Maximum entropy inverse rein-

forcement learning. In Proceedings of the 23rd AAAI Conference on Artificial Intelligence, pages
1433–1438, 2008.

Hong Chen, Yudong Chen, Xin Wang, Ruobing Xie, Rui Wang, Feng Xia, and Wenwu Zhu. Curricu-
lum disentangled recommendation with noisy multi-feedback. In Advances in Neural Information
Processing Systems, pages 26924–26936, 2021a.

Minmin Chen, Alex Beutel, Paul Covington, Sagar Jain, Francois Belletti, and Ed H. Chi. Top-k
off-policy correction for a REINFORCE recommender system. In Proceedings of the Twelfth ACM
International Conference on Web Search and Data Mining, pages 456–464, 2019.

Xiaocong Chen, Lina Yao, Aixin Sun, Xianzhi Wang, Xiwei Xu, and Liming Zhu. Generative
inverse deep reinforcement learning for online recommendation. In Proceedings of the 30th ACM
International Conference on Information and Knowledge Management, pages 201–210, 2021b.

Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra, Hrishi Aradhye, Glen
Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, et al. Wide & deep learning for recommender
systems. In Proceedings of the 1st workshop on deep learning for recommender systems, pages
7–10, 2016.

Paul Covington, Jay Adams, Emre Sargin, and Mengchen Zhao. Deep neural networks for youtube
recommendations. In Proceedings of the 10th ACM Conference on Recommender Systems, page
191–198, 2016.

Xinyi Dai, Jianghao Lin, Weinan Zhang, Shuai Li, Weiwen Liu, Ruiming Tang, Xiuqiang He, Jianye
Hao, Jun Wang, and Yong Yu. An adversarial imitation click model for information retrieval. In
Proceedings of the Web Conference, pages 1809–1820, 2021.

Ramachandran Deepak and Eyal Amir. Bayesian inverse reinforcement learning. In Proceedings of
the 20th International Joint Conference on Artificial Intelligence, pages 2586–2591, 2007.

Hanze Dong, Wei Xiong, Deepanshu Goyal, Rui Pan, Shizhe Diao, Jipeng Zhang, Kashun Shum, and
Tong Zhang. Raft: Reward ranked finetuning for generative foundation model alignment, 2023.

Tom Fawcett. An introduction to roc analysis. Pattern recognition letters, 27(8):861–874, 2006.

Divyansh Garg, Shuvam Chakraborty, Chris Cundy, Jiaming Song, and Stefano Ermon. Iq-learn:
Inverse soft-q learning for imitation. In Advances in Neural Information Processing Systems, pages
4028–4039, 2021.

Alexandre Gilotte, Clément Calauzènes, Thomas Nedelec, Alexandre Abraham, and Simon Dollé.
Offline a/b testing for recommender systems. In Proceedings of the Eleventh ACM International
Conference on Web Search and Data Mining, pages 198–206, 2018.

Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xiuqiang He. Deepfm: a factorization-
machine based neural network for ctr prediction. In Proceedings of the 26th International Joint
Conference on Artificial Intelligence, 2017.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International conference
on machine learning, pages 1861–1870. PMLR, 2018.

Choi Jaedeug and Kee-Eung Kim. Nonparametric bayesian inverse reinforcement learning for
multiple reward functions. In Advances in Neural Information Processing Systems, pages 305–313,
2012.

Chen Jiawei, Hande Dong, Xiang Wang, Fuli Feng, Meng Wang, and Xiangnan He. Bias and
debias in recommender system: A survey and future directions. ACM Transactions on Information
Systems, 41(3):1–39, 2023.

Ho Jonathan and Stefano Ermon. Generative adversarial imitation learning. In Advances in Neural
Information Processing Systems, 2016.

11

Diederik P. Kingma and Jimmy Ba. Deepfm: a factorization-machine based neural network for ctr
prediction. In International Conference on Learning Representations, 2015.

Jialin Liu, Xinyan Su, Zeyu He, Xiangyu Zhao, and Jun Li. Adversarial batch inverse reinforcement
learning: Learn to reward from imperfect demonstration for interactive recommendation. In arXiv
preprint arXiv:2310.19536, 2023a.

Langming Liu, Liu Cai, Chi Zhang, Xiangyu Zhao, Jingtong Gao, Wanyu Wang, Yifu Lv, Wenqi
Fan, Yiqi Wang, Ming He, et al. Linrec: Linear attention mechanism for long-term sequential
recommender systems. In Proceedings of the 46th International ACM SIGIR Conference on
Research and Development in Information Retrieval, pages 289–299, 2023b.

Ziwei Liu, Qidong Liu, Yejing Wang, Wanyu Wang, Pengyue Jia, Maolin Wang, Zitao Liu, Yi Chang,
and Xiangyu Zhao. Bidirectional gated mamba for sequential recommendation. arXiv preprint
arXiv:2408.11451, 2024.

Julian McAuley, Christopher Targett, Qinfeng Shi, and Anton Van Den Hengel. Image-based
recommendations on styles and substitutes. In Proceedings of the 38th international ACM SIGIR
conference on research and development in information retrieval, pages 43–52, 2015.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Gray, John Schulman, Jacob Hilton, Fraser Kelton,
Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike, and
Ryan Lowe. Training language models to follow instructions with human feedback. In Advances
in Neural Information Processing Systems, pages 27730–27744, 2022.

Yanru Qu, Han Cai, Kan Ren, Weinan Zhang, Yong Yu, Ying Wen, and Jun Wang. Product-based
neural networks for user response prediction. In 2016 IEEE 16th international conference on data
mining (ICDM), pages 1149–1154. IEEE, 2016.

Arora Saurabh and Prashant Doshi. A survey of inverse reinforcement learning: Challenges, methods
and progress. Artificial Intelligence, 297(103500), 2021.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Jing-Cheng Shi, Yang Yu, Qing Da, Shi-Yong Chen, and An-Xiang Zeng. Virtual-taobao: Virtualizing
real-world online retail environment for reinforcement learning. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 33, pages 4902–4909, 2019.

Adith Swaminathan and Thorsten Joachims. The self-normalized estimator for counterfactual learning.
advances in neural information processing systems, 28, 2015.

Ruoxi Wang, Bin Fu, Gang Fu, and Mingliang Wang. Deep & cross network for ad click predictions.
In Proceedings of the ADKDD’17, 2017.

Wenjie Wang, Fuli Feng, Xiangnan He, Liqiang Nie, and Tat-Seng Chua. Denoising implicit feedback
for recommendation. In Proceedings of the 14th ACM International Conference on Web Search
and Data Mining, pages 373–381, 2021.

Kang Wang-Cheng and Julian McAuley. Self-attentive sequential recommendation. In Proceedings
of the International Conference on Data Mining, pages 197–206, 2018.

Dabney Will, Mark Rowland, Marc Bellemare, and Rémi Munos. Distributional reinforcement
learning with quantile regression. In Proceedings of the 33rd AAAI Conference on Artificial
Intelligence, 2018.

Jae woong Lee, Seongmin Park, Jongwuk Lee, and mengchen zhao. Dual unbiased recommender
learning for implicit feedback. In Proceedings of the 44th International ACM SIGIR Conference
on Research and Development in Information Retrieval, pages 1647–1651, 2021.

Jiaqi Yang, Xiang Li, Shuguang Han, Tao Zhuang, Dechuan Zhan, Xiaoyi Zeng, and Bin Tong. Cap-
turing delayed feedback in conversion rate prediction via elapsed-time sampling. In Proceedings
of the AAAI Conference on Artificial Intelligence, pages 4582–4589, 2021.

12

Ren Yi, Hongyan Tang, Jiangpeng Rong, and Siwen Zhu. Unbiased pairwise learning from implicit
feedback for recommender systems without biased variance control. In Proceedings of the 46th
International ACM SIGIR Conference on Research and Development in Information Retrieval,
pages 2461–2465, 2023.

Wenhui Yu and Zheng Qin. Sampler design for implicit feedback data by noisy-label robust learning.
In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in
Information Retrieval, pages 861–870, 2020.

Guanjie Zheng, Fuzheng Zhang, Zihan Zheng, Yang Xiang, Nicholas Jing Yuan, Xing Xie, and
Zhenhui Li. DRN: A deep reinforcement learning framework for news recommendation. In
Proceedings of the 2018 world wide web conference, pages 167–176, 2018.

Guorui Zhou, Xiaoqiang Zhu, Chenru Song, Ying Fan, Han Zhu, Xiao Ma, Yanghui Yan, Junqi Jin,
Han Li, and Kun Gai. Deep interest network for click-through rate prediction. In Proceedings of
the 24th ACM SIGKDD international conference on knowledge discovery and data mining, pages
1059–1068, 2018.

Guorui Zhou, Na Mou, Ying Fan, Qi Pi, Weijie Bian, Chang Zhou, Xiaoqiang Zhu, and Kun Gai.
Deep interest evolution network for click-through rate prediction. In Proceedings of the AAAI
conference on artificial intelligence, volume 33, pages 5941–5948, 2019.

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our main contribution is the MTRec framework with the QR-IQL algorithm,
which is described in Section 4 and justified in Section 5.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The limitation is discussed in Appendix A.5.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

13

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: The derivations details are provided in Appendix A.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The implementation details are provided in Appendix A.3.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed

14

instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: We provide implementation details in Appendix A.3 and will release the code
upon acceptance of this paper.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All the data processing, training and evaluation details are described in
Section 5 and Appendix A.
Guidelines:

15

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report the mean CTR with 95% confidence interval in Figure 2.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The computational resources and training times are provided in Appendix A.3.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We respect the NeurIPS Code of Ethics.

16

https://neurips.cc/public/EthicsGuidelines

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This work focuses on the technical foundations of sequential recommendation.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our paper does not release data or models with a high risk for misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

17

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All the baselines are properly cited and introduced in Section 5.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects

18

paperswithcode.com/datasets

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

A Technical Appendices and Supplementary Material

A.1 Derivations of Problem 6

In this section, we show that Problem 4 can be simplified and translated to Problem 6, under the
assumption that Q(s, a) follows a quantile distribution Zλ(s, a). Given Problem 4:

max
Q∈Ω

Es,a∼ρE
[ψ(Q(s, a)− γEs′∼P (s,a)V

∗(s′))]− (1− γ)Es0∼ρ0
[V ∗(s0)], (4)

The second term can be expanded as:

(1− γ)Es0∼ρ0
[V ∗(s0)] = (1− γ)

∞∑
t=0

EDE
[V ∗(st)]− (1− γ)

∞∑
t=1

EDE
[V ∗(st)]

= EρE
[V ∗(s)− γV ∗(s′)], (13)

Since we already have the expert trajectory dataset DE , we will use ρE to estimate Equation 13.
Then, on substituting ψ(x) = x− 1

4αx
2 and V ∗(s) = log

∑
a expQ(s, a) in Problem 4, we have:

max
Q

EρE
[Q(s, a)− log

∑
a

expQ(s, a)]− 1

4α
EρE

[(Q(s, a)− log
∑
a

expQ(s′, a))2]. (14)

As Q(s, a) is parameterized by quantiles {λi(s, a)}Ni=1, we replace Q with Qλ and obtain Problem 6.

19

https://neurips.cc/Conferences/2025/LLM

A.2 Optimization steps for QR-IQL

In order to learn the distributional Q-function, we change the output layer of the Q-network to be of
size |A| ×N , where |A| denotes the size of the action space and N denotes the number of quantiles.
For a given action, each of the N heads implicitly correlates to a λi. We adopt the widely used Pinball
loss to learn the positions of {λi}Ni=1, which is defined as:

pλ(u) =

{
λ · u, u ≥ 0

(λ− 1) · u, u < 0

where u represents the error between the predicted value and the target value at quantile λ. Intuitively,
the Pinball loss pushes the quantile λ to the right position so that the predicted value distribution
matches the target distribution. Based on the objective of Problem 6, we define two errors as:

u1λi
(s, a) = λi(s, a)− log

∑
a

expλi(s, a),

u2λi
(s, a, s′) =

1

4α
(λi(s, a)− log

∑
a

expλi(s
′, a))2,

where λi is the i-th quantile and λi(s, a) is the corresponding head of the Qλ-network. Complete
training procedures are provided in Algorithm 1.

Algorithm 1 QR-IQL Optimization Steps
Input: Interaction (expert) data DE , number of quantiles N

1: Initialize network Qλ;
2: repeat
3: Sample (batched) data (s, a, s′);
4: Compute errors u1λi

(s, a) and u2λi
(s, a, s′) for each quantile in {λi}Ni=1;

5: Compute the Pinball losses pλi
(u1) and pλi

(u2) for each quantile in {λi}Ni=1;
6: Compute the total loss as:

∑N
i=1[pλi

(u1) + pλi
(u2)];

7: Minimize the total loss by Adam Kingma and Ba [2015];
8: until convergence

Output: Q∗
λ

A.3 Implementation Details

Our experiments are run on a server with 2×AMD EPYC 7542 32-Core Processor CPU and
2×NVIDIA RTX 3090 graphics. For the offline experiments on Amazon datasets, it takes about 3
hours for 50,000 iterations of training with a 4000 batch size. For online experiments on Virtual
Taobao, it takes about 4 hours for 50,000 RL training steps.

Algorithm 2 describes an overview of the implementation procedures. Basically, there are two
stages. At stage 1 we focus on learning Q∗

λ and at stage 2 we focus on learning F ∗
ζ . In practice, the

architecture of the recommendation model Fζ could be of various types. For example, in Section
5.1, we test seven widely used recommendation models: Wide&Deep Cheng et al. [2016], PNN Qu
et al. [2016], DeepFM Guo et al. [2017], DIN Zhou et al. [2018], DIEN Zhou et al. [2019], LinRec
Liu et al. [2023b] and SIGMA Liu et al. [2024]. We will use the same network architecture of Fζ

to construct Qλ (except the output layer) to ensure that the features are processed properly. All the
hyper-parameters of the backbone models follow their official codes. For implementation of MTRec,
we select the number of quantiles N = 10 and the weight α = 0.5 in Problem 6.

Actually, our MTRec framework is industrial friendly due to the following merits. First, all the
training procedures are run in an offline manner, saving the cost of building online user-system
interaction environments. Second, since Qλ shares the model architecture with Fζ , we do not need to
build a mental reward model from scratch, saving a lot of work for adaptation.

A.4 Details on the Amazon datasets

The Amazon dataset McAuley et al. [2015] collects user review data from amazon.com. The crawled
reviews have a time span from May 1996 to July 2014. The dataset can be divided into many subsets

20

Algorithm 2 Overall Implementation of MTRec
Input: Interaction (expert) data DE

1: Initialize networks Qλ and Fζ ;
2: Learn Q∗

λ according to Algorithm 1;
3: Obtain the mental rewards by
r(s, a)← Q∗

λ(s, a)− γV ∗(s′), ∀s, a ∼ DE ;
4: Patch the mental rewards to DE ;
5: Learn F ∗

ζ according to Equation 10 or Equation 12;
Output: Aligned Recommendation Model F ∗

ζ

according to the various product categories. To verify the effectiveness of MTRec, we utilized two
subsets of the Amazon dataset: Books and Electronics. We treated the reviews as user behaviors and
sorted the reviews from each user chronologically. Based on a user’s historical behaviors, our goal
was to predict whether the user would write a review.

Dataset User Item Categoriy Sample

Books 603,668 367,982 1,600 603,668
Electronics 192,403 63,001 801 192,403

Table 2: The statistics of the Amazon datasets.

A.5 Limitations

While our work opens a door for studying users’ intrinsic rewards during their interaction with the
recommender systems, it still lacks a systematic method to thoroughly evaluate the learned mental
reward model. In future works, we plan to construct a comprehensive benchmark involving large-scale
human studies to further evaluate the mental reward model.

21

	Introduction
	Related Works
	Preliminaries
	Method
	User-Centric Markov Decision Process
	Uncovering the Mental Reward Model
	A distributional perspective on IRL
	Quantile Regression Inverse Q-learning (QR-IQL)

	Applications of the Mental Reward model

	Experiments
	Experiments on Public Datasets (RQ1)
	Experiments on Virtual Taobao (RQ2)
	Evaluation of the Mental Reward Model (RQ3)
	Online A/B test on Industrial Platform (RQ4)

	Conclusions
	Technical Appendices and Supplementary Material
	Derivations of Problem 6
	Optimization steps for QR-IQL
	Implementation Details
	Details on the Amazon datasets
	Limitations

