
 

FEATURE ARTICLE: SURVEILLANCE 

Camera Placement Based 
on Vehicle Traffic for 
Better City Security 

Surveillance 

Security surveillance is important in smart cities. 

Deploying numerous cameras is a common approach. 

Given the importance of vehicles in a metropolis, using 

vehicle traffic patterns to strategically place cameras 

could potentially facilitate security surveillance. This 

article constitutes the first effort toward building the link 

between vehicle traffic and camera placement for 

better security surveillance. 

Carefully conducted surveillance has become a widely-used 
tactic in city-wide security efforts. Due to the continuous 
growth of cities in size and complexity, maintaining safety 
becomes critical to attracting skilled people and economic 
investment. 

To counter the adversary, deploying a number of video cam-
eras is a common approach.1 At first glance, camera placement for adequate coverage could be 
achieved by purchasing numerous cameras. However, subject to any realistic budget, cameras 
cannot be placed unlimitedly. Additionally, as the camera resolution increases, the overhead of 
transmitting and processing videos would be considerably large. For example, a latest IP camera 
may require up to 10 Mbps bandwidth.2 

Using the information gleaned from vehicle traffic patterns to strategically place cameras could 
potentially facilitate security surveillance. For example, criminals may drive vehicles before and 
after security breaches occur, or even use vehicles as weapons like in the 2017 Westminster at-
tack.3 Thus, monitoring vehicles on the roads has great potential in collecting evidence in crimi-
nal investigations. 
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A straightforward strategy is to place cameras in busy regions that would naturally have more 
vehicle traffic, where people tend to commit crime or where terrorist attacks may be more likely 
to occur. However, this strategy may fail to cover vehicles that never enter busy regions. A good 
strategy would be to have as many individual vehicles recorded by surveillance cameras as pos-
sible and to record each vehicle as frequently as possible. 

After setting up the camera infrastructure, the next requirement is that the cameras can provide 
high-resolution images for high-quality evidence. However, because of the overhead barrier, the 
number of cameras that could be simultaneously configured as high-resolution is limited. Deter-
mining which cameras should be configured as high-resolution is non-trivial. If it is a fixed set of 
cameras, criminals may use that knowledge to evade surveillance. 

This article investigates security camera placement informed by vehicle traffic, and formulates it 
as a group of submodular function optimization problems solvable by the greedy algorithm with 
theoretical lower bounds. We propose five placement strategies with different goals. Further-
more, considering the video transmitting and processing overhead, we design a game-theoretic 
framework for randomized camera resolution upgrading with maximal utility to deter a sophisti-
cated adversary. 

To the best of our knowledge, we are the first to build the connection between vehicle traffic and 
camera placement for principled ways of security surveillance. 

PLACEMENT STRATEGIES FOR BUILDING 
SURVEILLANCE INFRASTRUCTURE 

Problem Description 
Let V be the set of vehicles and v V∈  denote a vehicle. A record from a vehicle’s motion sen-
sor comprises: vehicle ID, time, latitude, longitude, and the vehicle ID uniquely identifies a vehi-
cle. 

We consider the metropolis as a rectangle characterized by maximum latitude, minimum lati-
tude, maximum longitude, and minimum longitude. The rectangle is divided into small-sized 
l l×   (e.g., 50m×50m) blocks, resulting in a block set denoted by Ω . The advantages of dividing 
the map into blocks include map-independence, so it would be applicable for all metropolises, 
and exact coverage of the complete map. 

Our goal is to find a subset of blocks C ⊆ Ω  to place cameras maximizing security surveillance 

utility. Let N  denote the maximum number of blocks where we can afford to place cameras. 
Obviously, we have | |C N≤ . Note that only blocks with GPS records can be selected for camera 

placement, hence covering at least one road. 

Placement Strategies 
We propose five placement strategies facilitating security surveillance in different aspects. The 
motivation is as follows. First, in real-life security surveillance, it is best to observe as many 
distinct vehicles as possible and as much vehicle traffic as possible. Thus, maximum unique 
vehicles (i.e., S1) and maximum vehicle traffic (i.e., S2) are two immediate functions to optimize 
concerning overall statistics of all vehicles. Second, for any given vehicle, we expect it can 
spend more time under surveillance, and hit unique cameras more frequently along its trajectory. 
Accordingly, we propose metrics S3, S4 and S5 as detailed below. 

For all strategies, we denote the objective function by ( )F C . 

S1—Maximum Unique Vehicles. It selects a subset C ⊆ Ω  to maximize the number of unique 

vehicles crossing one or more blocks in C, formally expressed as 
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( ) ( )arg max v
v VC

F C I C
∈

=  

where Iv(C) equals one if v crossed at least one block in C; otherwise zero. S1 maximizes the 
total number of unique vehicles. 

S2—Maximum Vehicle Traffic. S2 maximizes the amount of vehicle traffic, rather than unique 
vehicles, crossing blocks in C. It equals 

( ) ( )arg max v
v VC

F C T C
∈

=  

where Tv(C) denotes the amount of traffic of blocks in C contributed by v, and could be meas-
ured by the total time when v stays inside C. Tv(C) can be calculated by ∑c∈C Tv(c), where Tv(c) 
denotes the total time when v stays in c, depending on the times when v enters and leaves c. 

S3—Minimum Mean OITR (Out-Camera to In-Camera Time Ratio). S3 minimizes the mean 
OITR across all vehicles. The OITR of a vehicle represents the proportion of time when a vehi-
cle is out of surveillance. Intuitively, smaller mean OITR across all vehicles indicates better 
security surveillance. We express S3 as 

( ) ( 1)/ | |
( ) 1

arg max
v V vC

S
F C V

T C∈

= Φ − −
+  

where S is the measurement time. S3 does not consider the uniqueness of cameras. Therefore, it 
encourages more unique vehicles visible to (whichever) cameras, and meanwhile each vehicle 
visible to cameras as long as possible. Note that Tv(C) is increased by one to avoid zero denomi-
nator, and Φ is a constant derived from ( ) 0F ∅ =  so that F(C) ≥ 0. The same operation exists 

for S4 and S5. 

S4—Minimum Mean ACIs (Average Camera-Hit Intervals). We define the ACIs to represent the 
average time interval to hit a camera for a vehicle. Formally, we minimize mean ACIs across all 
vehicles, and S4 is 

( ) ( )/ | |
( ) 1

arg max
v V vC

S
F C V

H C∈

= Φ −
+  

where Hv(C) denotes the number of times that v hits (whichever) cameras along its trajectory 
during measurement time S. S4 encourages more unique vehicles visible to (whichever) cameras, 
and meanwhile each vehicle to hit cameras more frequently. 

S5—Minimum Mean AUIs (Average Unique-Camera Hit Intervals). We further adapt S4 by con-
sidering the uniqueness of cameras that a vehicle hits. Accordingly, we define the AUIs to repre-
sent the average time interval to hit a new camera for a vehicle. We minimize mean AUIs across 
all vehicles, and S5 is 

( ) ( )/ | |
( ) 1

arg max
v V vC

S
F C V

U C∈

= Φ −
+  

where Uv(C) denotes the number of unique cameras that v hits during measurement time S. 
Uv(C) is the number of unique blocks in C that v crosses. S5 encourages more unique vehicles 
visible to cameras, and meanwhile each vehicle hits more new cameras. 

Solving Optimal Placement Strategies 
All strategies are formulated as maximization problems. To find an optimal subset C, we need to 
solve these problems, which are NP-hard. All these maximization problems could be solved with 
a greedy algorithm (GA) because of their non-increasing monotony and submodularity.4-5 The 
non-increasing monotony means that, for any two sets C1, C2 ⊆ Ω and C1 ⊆ C2, we have F(C1) ≤ 
F(C2). Apparently, the functions defined in S1∼S5 are non-decreasing.  

The submodularity means that a non-decreasing set function has the property of diminishing 
returns when a new element c is added to an input set C, as compared to c is added to an input 
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set that is a subset of C. Specifically, for a non-decreasing function, such as F(C) in S1∼S5, 
given any two sets C1, C2 ⊆ Ω and C1 ⊆ C2, and a new block c ∈ Ω\C2, the submodularity refers 
to F(C1∪{c})−F(C1)≥ F(C2∪{c})−F(C2), i.e., smaller sets have more function value increment 
when added with a new block. Interested readers are referred to Krause and Golovin5 for a com-
prehensive survey of submodularity. It is easy to prove the submodularity for S1 and S2. The 
proof of the submodularity for S3∼S5 is given below.  

For F(C) in S3, given any two sets C1,C2 ⊆ Ω and C1 ⊆C2, we have 

*
*

( ) ( 1)/ | |
( ) 1v V v

S
F C V

T C∈

= Φ − −
+

. 

Note *C  means the equation holds for both C1 and C2. We add a new block c ∈ Ω\C2 to C1 and C2, 

and obtain 

*
*

( { }) ( 1)/ | |
( { }) 1v V v

S
F C c V

T C c∈

= Φ − −
+


. 

We derive function value increment as 

* *
* *

( { }) ( ) ( )/ | |
( ) 1 ( { }) 1v V v v

S S
F C c F C V

T C T C c∈

− = −
+ +


. 

Recall the definition of Tv(C). Because of 1c C∉  and 2c C∉ , we have Tv(C1∪{c})= 
Tv(C1)+Tv({c}), and Tv(C2∪{c})= Tv(C2)+Tv({c}). Therefore, we derive 

* *
* *

( { }) ( ) ( )/ | |
( ) 1 ( ) 1 ({ })v V v v v

S S
F C c F C V

T C T C T c∈

− = −
+ + + . 

Given C1 ⊆C2, we have Tv(C1) ≤ Tv(C2). Thus, 

1 1 2 2( ) 1 ( ) 1 ({ }) ( ) 1 ( ) 1 ({ })v v v v v v

S S S S

T C T C T c T C T C T c
− ≥ −

+ + + + + +
. 

Finally, we have 

1 1 2 2( { }) ( ) ( { }) ( )F C c F C F C c F C− ≥ −  . 

The submodularity holds for F(C) in S3. Similarly, we can deduce the submodularity for F(C) in 
S4 and S5. 

Submodularity allows us to derive a solution lower bounded by 1−1/e ≈ 63 percent of the opti-
mal solution.4 GA runs for at most N rounds to obtain a set C of size |C| ≤ N. In each round, it 
selects a new block c ∈ Ω\C maximizing the reward gain, δc(C) = F(C ∪c)−F(C), and inserts c 
into C. This process repeats until |C| = N or δc(C) = 0. 

RANDOMIZED CAMERA RESOLUTION UPGRADING 
FOR HIGH-QUALITY SURVEILLANCE 
We have designed camera deployment strategies, given the budget of the maximum number of 
cameras. The aim of these strategies is to deploy camera infrastructure, offering basic surveil-
lance of vehicle movement (e.g., plate number, trajectories). However, in real-life, high-quality 
crime evidence may be needed to identify fine-grained information (e.g., criminals’ faces), en-
tailing the deployment of high-resolution cameras. 

Modern cameras could be remotely configured as different resolutions. Nevertheless, if the num-
ber of deployed cameras is pretty large, it is unlikely to configure all cameras as high-resolution 
due to the intractable overhead of handling videos (e.g., transmission, and processing). That is, 
only a limited number of cameras could be of high-resolution simultaneously. 
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Next, we study which cameras should be configured as high-resolution among all the deployed 
cameras. If a fixed set of cameras are configured as high-resolution, the adversary may evade 
them deliberately in the long run. To avoid being evaded, we propose to randomly choose a set 
of placed cameras and upgrade their resolution in a principled way, for deterring the adversary 
with the fact that any camera might be of high-resolution. 

Note that the high-resolution of cameras are not a parameter in the functions to optimize in the 
previous section. The reason is that those objective functions are designed for deploying camera 
infrastructure, offering basic surveillance of vehicle movement without the need to consider 
camera resolutions. We assume that all deployed cameras could be remotely configured as high-
resolution. In this section, the high-resolution of cameras would be taken into account by solving 
the probabilities to set cameras as high-resolution under a game-theoretic model. 

A Game-theoretic Formulation 
Since blocks differ in their surveillance priorities, we consider the block importance when de-
signing the randomized strategy. Meanwhile, the adversary aims to evade high-resolution camer-
as, while the defender tries to observe the adversary. 

To describe such confrontation, we leverage the Stackelberg security game (SSG).6 A standard 
SSG has two players, a leader and a follower. Each player has their own set of pure strategies to 
select. The players act sequentially as follows. 

Step 1. The leader (i.e., defender) commits to a mixed strategy, i.e., playing a probability distri-
bution over pure strategies, maximizing her utility. 

Step 2. After learning the mixed strategy chosen by the leader, the follower (i.e., adversary), as a 
response, selects a pure strategy, optimizing his utility. 

We consider a threat model wherein the adversary is sophisticated. Specifically, the adversary 
can learn the defender’s mixed strategy (i.e., the probability distribution), and select the pure 
strategy maximizing his utility (i.e., a best response adversary). 

Meanwhile, the defender is forward-looking. That is, she takes into account the adversary’s 
threat model when designing strategies, thereby making her strategy robust against the sophisti-
cated adversary. 

Although the adversary can learn the defender’s mixed strategy, he cannot predict which specific 
pure strategy the defender would adopt at the time of scheduled criminal activities. 

Player Strategies 
A pure strategy of the defender is a set of cameras whose resolution can be upgraded simultane-
ously. Our aim is to deter the adversary by randomly upgrading the resolution of the placed cam-
eras. Thus, the adversary committing crimes in blocks without cameras is not considered, and a 
pure strategy of the adversary is a set of blocks with placed cameras. 

Utility Functions 
Consider that the adversary commits crimes in the ith block ci. If ci is covered by the defender’s 
pure strategy, the defender receives reward d

iR ; otherwise penalty d
iP . Similarly, the adversary 

receives penalty a
iP  in the former case, and reward a

iR  in the latter case. The reward and the 

penalty can be assigned according to the block importance, such as the amount of vehicle traffic, 
the number of unique vehicles, and historical crime activity severity, and so forth. 

Let Γj denote the jth defender pure strategy, and Aij denote the coverage indicator of Γj on ci, 
where Aij = 1 for ci ∈ Γj, and Aij = 0 for i jc ∉ Γ . Let J be the number of defender pure strategies. 

The number of adversary pure strategies is N, the (maximum) number of blocks where cameras 
are placed. We denote the probability of the defender choosing Γj by aj, and 
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1

1
J

j
j

a
=

=
. 

The marginal probability xi for the defender to upgrade ci (i.e., upgrade the resolution of the 
camera in ci) is 

1

a , 1,2,...,
J

i j ij
j

x A i N
=

= =
. 

We denote (a1,a2,...,aJ) by a, and (x1,x2,...,xN) by x, where x is determined by a. 

We express the defender’s expected utility on upgrading ci as 

( ) (1 )d d d
i i i i i iU x x R x P= + − , 

and the adversary’s expected utility on committing crimes in ci is 

( ) (1 )a a a
i i i i i iU x x P x R= + − . 

Mixed Strategy Against a Best Response Adversary 
A sophisticated adversary takes the best response to commit crimes to maximize his utility. For-
mally, the probability that he selects ci equals 

1 ( ) ( ), 1,...,

0 otherwize

a a
i i j j

i

U x U x j J
B

 ≥ ∀ == 
 . 

This means that the adversary knows the marginal probability xi for the defender to upgrade ci, 
and he selects the target with maximal expected utility. The utility functions of the adversary and 
the defender are 

1

( )
N

a a
i i i

i

U BU x
=

= , 

1

( )
N

d d
i i i

i

U BU x
=

= . 

Simultaneously, the defender selects an optimal mixed (i.e., randomized) strategy in considera-
tion of the sophisticated adversary’s best response. The defender maximizes her utility Ud as 

a
1

max ( )
N

d
i i i

i

BU x
=
 . 

Substituting ( ) (1 )d d d
i i i i i iU x x R x P= + − , we rewrite the above equation as 

a
1

max ( (1 ) )
N

d d
i i i i i

i

B x R x P
=

+ − . 

To calculate the defender’s optimal strategy, problem P1 needs to be solved. 

a
1

1

1

max ( (1 ) )

. . a ,
P1:

1

0 1,

N
d d

i i i i i
i

J

i j ij
j

J

j
j

j

B x R x P

s t x A i

a

a j

=

=

=

 + −



= ∀


 =

 ≤ ≤ ∀







. 
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P1 can be solved by the branch-and-cut algorithm.7 The defender finally adopts the mixed strate-
gy below. 

Mixed Strategy:  play jΓ  with probability aj  

where aj∈ a is the solution of problem P1,j = 1,2,...,J 

EXPERIMENTAL EVALUATION 

Dataset 
The data contains one-week GPS trajectories of 10,357 taxis in Beijing.8 We remove the outlier 
GPS points, including those indicating an impossible speed and significantly deviating the mov-
ing average. 

We then divide Beijing into 50m × 50m blocks Ω, yielding the total number of such blocks |Ω| = 
14,473,089. We can place cameras in 438,674 blocks where vehicles arrive, denoted as R ⊂ Ω. 

Performance of Camera Placement Strategies 

Metrics 

Larger values of these metrics indicate better security surveillance. 

• UCR (Unique Vehicle Coverage Ratio). The ratio of observed unique vehicles to all ve-
hicles, calculated by ∑v∈V Iv(C)/∑v∈V Iv(R). 

• VCR (Vehicle Traffic Coverage Ratio). The ratio of traffic observed by all cameras to 
the total amount of traffic, which equals ∑v∈V Tv(C)/∑v∈V Tv(R). 

• VIT (Vehicle In-Camera Time). The total amount of time when a vehicle v is under sur-
veillance, i.e., Tv(C) 

• VCH (Vehicle Camera-Hits). The number of times that v hits cameras along its trajecto-
ry, calculated as ' ({ })vc C

I c
∈ , where ' ({ })vI c  is the number of times v hits c ∈C. 

• VUH (Vehicle Unique-Camera-Hits). The number of unique cameras v hits, calculated 
as ∑c∈C Iv({c}), where Iv({c}) equals one if v hits c; otherwise zero. 

Results 

For each strategy, we calculate UCR, VCR, and VIT by varying the number of cameras N from 1 
to 10,000. UCR and VCR reveal the proportion of unique vehicles and vehicle traffic covered 
under each strategy. Additionally, we calculate VIT, VCH, and VUH for each vehicle to have a 
closer look at the total amount time when a vehicle is under surveillance, the total number of 
cameras a vehicle hits, and the total number of unique cameras a vehicle hits, respectively. 

Figure 1 depicts the performance of all strategies. Generally, the metrics increase slower as N 
becomes larger, meaning all strategies accomplish diminishing returns. Particularly, all metrics 
rise rapidly before N reaches 200, accounting for no more than 0.05 percent of all possible 
blocks where we can place cameras (i.e., R). 
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Figure 1. The performance metrics over the number of cameras N of different placement strategies. 

As Figure 1(a) shows, a very small proportion of cameras need to be placed to cover the vast 
majority of vehicles. Specifically, all strategies exhibit a rapid rise in UCR to at least 90 percent 
before N reaches 200, indicating that we need to place cameras in no more than 0.05 percent of 
blocks to cover at least 90 percent of vehicles. Moreover, all strategies except S2 achieve a 100 
percent UCR before N reaches 900 (i.e., 0.2 percent of R), while S2 almost has no increasing 
returns after N = 4,000. 

Insight 1. To cover all vehicles, we need to place cameras only in 0.2 percent of blocks at most 
using S1, S3, S4, S5. Among these strategies, S1 could cover all vehicles with the smallest N, 
followed by S3, S4, and S5 in ascending order. However, S2 could hardly converge to cover all 
vehicles as N increases. 

This insight reveals the existence of a small set of “core” blocks covering all vehicles. Figure 
2(a) shows the minimum set of such “core” blocks derived from S1. 

Figure 1(b) demonstrates the vehicle traffic coverage ratio, where VCR rises roughly linearly as 
N increases for all strategies except S1. Among all strategies, S2 exhibits the largest growth rate, 
followed by S4, S3, S5, and S1. Figure 2(b) shows top 563 blocks where we can place cameras to 
maximize VCR using S2. We observe that the blocks in Figure 2b are significantly less geo-
graphically dispersed than those in Figure 2(a). The growth rates of S3 and S4 are comparable. 
S1 almost has no increasing returns after N = 200, implying that emphasizing vehicle coverage 
may fail to maximize traffic coverage. 
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Figure 2. Camera placement heatmaps derived using one-week taxi data in Beijing based on 
strategies S1 and S2. 

Insight 2. Although S1 achieves the best UCR, its performance regarding VCR degrades drasti-
cally to an extent where no increasing return is accomplished after N = 200. In contrast, S3∼S5 
achieve significant increasing returns regarding VCR as N increases. Their increasing returns, 
although not as fast as that of S2, can converge to cover all vehicles quickly but S2 cannot. 

This insight reveals that S3∼S5 can achieve well-balanced performance between UCR and VCR, 
because they encourage more vehicles under surveillance while considering more (unique) cam-
era hits and traffic coverage per vehicle. 

Figure 1(c) presents mean VCH across all vehicles, which has similar trend as VCR. This re-
flects that the number of camera hits is positively correlated to in-camera time. For the same 
reason, VIT exhibits the same trend as VCH. We therefore omit the plot of mean VIT. Among 
all strategies, S2 achieves the best average surveillance performance (i.e., longer in-camera time, 
more camera hits) per vehicle, though it may result in slow or even incomplete vehicle coverage. 
Despite the performance degradation in mean VCH compared to S2, S3∼S5 achieve median 
values of VIT and VCH across all vehicles comparable to S2, while simultaneously exhibiting 
much smaller standard deviation of VIT and VCH. Furthermore, the Gini coefficient of VCH for 
S2 is larger than that for S3∼S5, confirming that S3∼S5 achieve relatively fairer surveillance 
across all vehicles regarding in-camera time and camera hits than S2. 

Insight 3. S3~S5 achieve more balanced surveillance across all vehicles regarding in-camera 
time and camera hits than S2, avoiding little surveillance of some vehicles and too much surveil-
lance (possibly unnecessary) of others. Therefore, they provide relatively fairer surveillance 
services across all vehicles. 

Figure 2(d) presents the performance of mean VUH (i.e., the number of unique vehicles that a 
vehicle hits) across all vehicles. We observe that S5 achieves the largest mean VUH, while S1 
has no increasing returns after N reaches 200. The remaining strategies exhibit moderate perfor-
mance worse than that of S5. Actually, S5 encourages deploying cameras in the blocks where 
more different blocks along a vehicle’s trajectory can be observed, and meanwhile more vehi-
cles. In other words, S5 can capture more places where a vehicle has been. 

Insight 4. S5 is a strategy in favor of capturing more places where a vehicle has ever been. Oth-
er strategies perform worse than S5 regarding mean VUH. 

A Case Study of Randomized Resolution Upgrading 
We consider the surveillance scenario where N = 10,000 cameras are placed while only 1,000 
cameras could be configured as high-resolution. Suppose the surveillance focuses on criminal 
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activities that tend to be conducted at places with more vehicle traffic. We thus measure the im-
portance of a block ci according to its amount of traffic, i.e., T(ci) = ∑v∈V Tv({ci}). 

We consider that the defender and the adversary play a zero-sum game, i.e., each player’s gain or 
loss of utility is exactly balanced by the losses or gains of the utility of the other player. Formal-
ly, we set d

iR + a
iP  = 0, a

iR  + d
iP  = 0. Obviously, we have Ud +Ua = 0. Meanwhile, the im-

portance values of blocks are normalized through dividing each value by the maximum value. 
Therefore, we have d

iR , a
iR ∈ [0,1], and d

iP , a
iP  ∈ [−1,0]. It is easy to derive Ua,Ud ∈ [−1,1]. 

We then randomly generate 1,000 defender pure strategies in total. The union of these pure strat-
egies covers all the placed cameras to ensure that the resolution of any camera has a chance to be 
upgraded. Moreover, there are 10,000 adversary pure strategies, each of which is a block where 
crimes are committed. 

Table 1 shows the defender utility (i.e., Ud) when the defender adopts the mixed strategy, in 
comparison to two baseline defender strategies, namely, uniform strategy and best strategy. The 
uniform strategy means the defender adopts a pure strategy uniformly at random. The best strat-
egy allows the defender to constantly adopt the pure strategy that contains the most important 
block. We see that the mixed strategy achieves significantly larger utility than baseline strategies, 
no matter which strategy (S1∼S5) is employed to place the camera infrastructure. This indicates 
that, once the importance of each block is defined, one can derive the mixed strategy that outper-
forms baseline strategies and maximizes the defender utility against a sophisticated adversary. 
Thus, it is feasible and effective to strategically randomize camera resolution upgrading for high-
quality evidence of criminal activity. 

Table 1. The Defender’s Expected Utility Against a Best-Response Adversary Under Different 
Strategies and Different Camera Placement Strategies 

 
mixed strategy 

baseline strategies 

uniform strategy best strategy 

S1 -0.07313 -0.74600 -0.19582 

S2 -0.13279 -0.81400 -0.50654 

S3 -0.10210 -0.77800 -0.47290 

S4 -0.20533 -0.81000 -0.68853 

S5 -0.12091 -0.82800 -0.49978 

 

DISCUSSION 
Some roads may belong to different blocks. However, this does not affect the correctness of the 
final result derived using our method. The reason is that our method could be aware of the over-
lapping vehicle traffic that cameras in different blocks observe. For example, if one road belongs 
to two blocks, to maximize vehicle coverage, only one block needs to be selected for camera 
placement; otherwise two blocks would observe the same vehicles, thereby failing to maximize 
vehicle coverage. 

Different types of vehicles may differ in surveillance priorities. For example, compared with 
individual cars, taxis and school buses need higher priorities. Every vehicle v can be assigned a 
weight wv indicating its surveillance priority. One can also assign such weights according to a 
vehicle’s reputation from accident records, a vehicle owner’s criminal records, etc. The weight 
wv can be directly used as a multiplier of the parameters Iv(C), Tv(C), Hv(C), and Uv(C) in the 
proposed strategies, without altering submodularity of F(C). Incorporating weights allows us to 
customize placement strategies with a bias towards vehicles with higher priorities. 

placement utility 

defender 
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Customizing security surveillance not only anticipates GPS data sharing from vehicles, but also 
relies on social data sources helpful to surveillance. The data sharing may introduce privacy 
issues, which could be resolved via data obfuscation. Whenever a security event occurs, the ob-
fuscated data (e.g., vehicles IDs) could again be recovered from recorded videos using plate 
number recognition techniques, after being authorized. Tracking individual vehicles by camera 
may also have privacy issues. Thus, we suggest the public should be notified of placed cameras, 
and the collected videos must be strictly managed according to law. 

Privacy issues may exist for people (i.e., non-criminals) who object to being under surveillance. 
If the video data were leaked or misused, a sophisticated adversary may track people’s trajecto-
ries across multiple cameras using object identification/tracking techniques to infer home and 
work locations. To address these issues, comprehensive measures in management, law enforce-
ment, and computer vision techniques should be combined and implemented in conjunction with 
the surveillance efforts. Interested readers are referred to Rajpoot and Jensen9 for detailed 
measures. Despite the privacy risks, video surveillance is indispensable in combating security 
threats. It must be used in ways that protect people against crime, without compromising priva-
cy. 

RELATED WORK 
Transportation monitoring includes tasks like road traffic monitoring, urban environment model-
ing.10 It undoubtedly accelerates the operation efficiency of cities. However, none of the existing 
studies uses vehicle traffic to optimize camera placement for better security surveillance. 

There is a rising trend towards game-theoretic security patrolling on roads.11 A defender can 
schedule checkpoints on roads to detect adversaries. Different from these studies, we leverage 
game theory to control placed cameras. Moreover, camera placement complements road patrol-
ling, because the adversaries missed by road checkpoints could be further inspected by cameras. 
Deploying cameras in each selected block is another problem particularly studied by the comput-
er vision community. Typical purposes include performing accurate three-dimensional recon-
struction, detecting vehicle violations,12 and tracking and recognizing human motions and 
activities.13 These techniques consider camera specifications (e.g., visual distance, orientation, 
Field of View) and road maps in a small area (e.g., office, road intersections).14 All these tech-
niques can be borrowed to place cameras in each selected block. 

CONCLUSION 
This article explored the connection between vehicle traffic and camera placement for principled 
ways of security surveillance. We proposed five camera placement strategies that are submodular 
and solvable with theoretical bounds. Using real-world data, we demonstrated that the proposed 
strategies could facilitate security surveillance in different aspects. We also studied the problem 
that high-resolution video is desired for high-quality evidence of criminal activity, while only a 
limited number of placed cameras can be configured as high-resolution. The results illustrated 
that, using the game-theoretic randomized strategy, we can deter a sophisticated adversary with 
maximal utility. In an era of terrorism, we expect our work could influence the decision making 
of surveillance camera placement in smart cities. 
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