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Abstract
In many real-world scenarios, we need to select
from a set of candidate policies before online de-
ployment. Although existing off-policy evaluation
(OPE) methods can be used to estimate the online
performance, they suffer from high variance. For-
tunately, we care only about the ranking of the can-
didate policies, rather than their exact online re-
wards. Based on this, we propose a novel frame-
work PoRank for learning to rank policies. In prac-
tice, learning to rank policies faces two main chal-
lenges: 1) generalization over the huge policy space
and 2) lack of supervision signals. To overcome the
first challenge, PoRank uses a Policy Comparison
Transformer (PCT) for learning cross-policy rep-
resentations, which capture the core discrepancies
between policies and generalizes well across the
whole policy space. The second challenge arises
because learning to rank requires online compar-
isons of policies as ground-truth labels, whereas
deploying policies online might be highly expen-
sive. To overcome this, PoRank adopts a crowd-
sourcing based learning-to-rank (LTR) framework,
where a set of OPE algorithms are employed to
provide weak comparison labels. Experimental re-
sults show that PoRank not only outperforms base-
lines when the ground-truth labels are provided, but
also achieves competitive performance when the
ground-truth labels are unavailable.

1 Introduction
In 1 many real-world scenarios such as trading [Zhang et al.,
2020], advertising [Cai et al., 2023], autonomous vehicles
[Shi et al., 2021; Deng et al., 2023b; Deng et al., 2023a], and
drug trials [Yang et al., 2023], the task often involves select-
ing the most promising policy from a set of candidates prior to
online deployment. This selection is critical, as online evalu-
ation of each policy can be costly and potentially risky. The
conventional approach for policy selection is to estimate the
online performance of candidate policies via Off-Policy Eval-
uation (OPE) [Paduraru, 2013]. OPE requires only off-policy

1† Corresponding author.

data, which means that we can estimate the performance of a
target policy using data generated by other policies.

Although OPE is a promising direction, existing OPE
methods are still far from reliable in practice. For example,
standard Inverse Propensity Scoring (IPS) based estimators
such as importance sampling suffer from high variance due
to the product of importance weights [Hanna et al., 2019].
Direct Methods (DM) requires extra estimators of environ-
mental dynamics or value functions, which are hard to learn
when the observation data is high-dimensional or insufficient.
Hybrid Methods (HM) such as doubly robust estimators com-
bine IPS and DM [Jiang and Li, 2016], yet it often comes with
additional hyperparameters that need to be carefully chosen.

Fortunately, in many real-world scenarios, we do not need
to estimate the exact online performance of candidate poli-
cies. Instead, we only care about which policy would perform
the best when deployed online. This inspires us to develop
a policy ranker focusing on predicting the ranking of target
policies regarding to their online performance. Learning such
a policy ranker is similar to learning item rankers in recom-
mender systems [Liu, 2009]. However, learning to rank poli-
cies faces two unique challenges. First, the policy space could
be extremely large, even in simple environments. Therefore,
a policy ranker with poor generalization ability would fail to
rank unseen policies. Second, unless deployed online, we
can hardly know the real performance of the policies, which
means that we are lack of ground-truth labels for training the
policy ranker. These challenges make it extremely hard to
train useful policy rankers in real-world tasks.

In this paper, we propose a novel and practical framework
called PoRank for learning to rank policies. PoRank com-
poses of a Policy Comparison Transformer (PCT) and a
learning-to-rank (LTR) module, where the PCT aims to learn
compact representations of policy pairs and the LTR mod-
ule focuses on predicting the order of input policies. Instead
of directly encoding the raw trajectories to policy represen-
tations (as is done in existing works), PCT encodes different
behaviors of two policies at the same sates to represent a pol-
icy pair. In such a way, PCT successfully extracts the most
useful features for policy ranking and significantly improves
the generalization over the policy space. The LTR module
is built upon the PCT. Conventionally, given two input poli-
cies, LTR requires a label to tell which policy performs bet-
ter. If we can easily obtain such labels, for example in the
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game environments, we can directly train the policy ranker
using supervised learning. However, in many industrial sce-
narios, obtaining such labels could be very expensive due to
deployment cost. To resolve this, we propose a novel crowd-
sourcing based LTR module, where a set of OPE methods are
employed to estimate the policy comparison labels. Specifi-
cally, these labels are constructed by comparing the estimated
accumulated rewards of the target policies. In such a way, we
can easily collect plenty of labels without deploying training
policies online. In the experiments, we first demonstrate the
advantage of the PCT architecture by comparing it with the
state-of-the-art policy ranking network, where both networks
are trained using ground-truth labels. Hence, we show that a
simple crowdsourcing mechanism could compensate for the
lack of ground-truth labels, which makes PoRank practical in
many real-world scenarios.

2 Related Works
Off-Policy Evaluation/Selection/Ranking The goal of
OPE is to precisely predict the online performance of target
policies given trajectory data collected by some other behav-
ior policies. Standard importance sampling approach suffers
from exponential variance with respect to the time horizon [Li
et al., 2015; Jiang and Li, 2016]. Recent works such as Fitted-
Q evaluation [Hoang et al., 2019] and marginalized impor-
tance sampling [Liu et al., 2018] achieve polynomial vari-
ance, yet they rely on additional function approximators. Di-
rect methods avoid the large variance by learning the dynamic
model or Q-function, which could be biased especially when
the data is insufficient. Some works study the offline policy
selection problem, yet their methods require running from
scratch for each candidate policy [Zhang and Jiang, 2021;
Mengjiao et al., 2022]. By contrast, in offline policy ranking
(OPR) problem we aim to develop a policy ranker that could
directly rank policies. A recent work on OPR collects online
performance of a set of policies and uses these labeled data to
train the policy ranker [Jin et al., 2022]. However, collecting
such data might be extremely expensive in practice.
Learning from Crowds Crowdsourcing systems enable
machine learners to collect labels of large datasets from
crowds. One big issue with crowdsourcing is that the labels
provided by crowds are often noisy [S. and Zhang, 2019]. To
tackle this challenge, various probabilistic generative meth-
ods are proposed for statistical inference [Yuchen et al., 2016;
Tian and Zhu, 2015]. Another line of works use discrimina-
tive models that find the most likely label for each instance
[Jing et al., 2014; Jing et al., 2015]. A recently work called
Crowd Layer (CL) first describes an algorithm for jointly
learning the target model and the reliability of workers [Filipe
and Pereira, 2018]. CL proposes a simple yet efficient crowd
layer that can train deep neural networks end-to-end directly
from the noisy labels. In our work, we treat existing OPE
methods as workers and adopt CL to process multiple labels
due to its simplicity and effectiveness.
Policy Representations Compact but informative repre-
sentations of policies not only benefit the policy learning pro-
cess [Tang et al., 2022], but also help with the policy trans-
fer among different tasks [Isac et al., 2019; G. et al., 2017].

A straightforward idea is to represent a policy by its net-
work parameters, yet this leads to a very sparse represen-
tation space. Network Fingerprint [Harb et al., 2020] pro-
poses a differentiable representation that uses the concate-
nation of the vectors of actions outputted by the policy net-
work on a set of probing states. Some recent works try to
encode policy parameters as well as state-action pair data
into a low-dimensional embedding space [Tang et al., 2022;
Jin et al., 2022]. However, existing works focus on single
policy representations, which fail to capture the relative dis-
crepancies between different policies.

3 Problem Statement
Markov Decision Process We consider the underlying en-
vironment as a Markov decision process (MDP) and define
an MDP as a finite–horizon tuple M = (S,A, T ,P,R, γ).
Here, S is the state space, and A is the action space. T is the
length of time horizon. P and R are the transition function
and the reward function, respectively. P(st+1|st, at) repre-
sents the probability of transitioning from state st to state
st+1 ∈ S when the agent takes action at ∈ A under state
st ∈ S and R(st, at) represents the immediate reward the
agent receives. The expected return of a policy π can be com-
puted by EP

[∑T
t=1

[
γtR(st, π(st)

]]
, where γ ∈ (0, 1] is

the discount factor.

Ranking Policies without Online Deployment The
goal of OPE is to estimate the expected return of a policy
π without deploying it online, given an offline dataset
D =

{
τk

}N

k=1
, where τk =

(
s0, a0, r0, · · · , sT , aT , rT

)k
are trajectories generated by some behavior policies. OPE is
usually used for model selection: We are required to select
the most promising policy from a candidate set of available
policies before actual deployment. Take recommender
systems as example, we can easily obtain a set of candidate
policies by adjusting the training data or the hyperparameters
of the model. However, we often need to select very few
policies from the candidates for online test, since a bad policy
would harm the user experience. Therefore, we care more
about the ranking of the candidate policies, instead of their
exact expected reward. We formally define the off-policy
ranking problem as follows.

Definition 1 (Offline Policy Ranking, OPR). Given a set of
trajectory data D =

{
τk

}N

k=1
generated by some behavior

policies and a set of target policies Π =
{
πi
}M

i=1
, the OPR

problem is to seek a ranking of the target policies that aligns
with their online expected accumulated rewards.

Intuitively, OPR is a simpler problem than OPE because we
do not care about the exact online performace of the candidate
polcies. While OPE as well as off-policy selection (OPS) can
also be used to rank candidate policies, they often need to
inputrun an estimation procedure from scratch for each can-
didate policy, thus leading to poor efficiency. In this work,
we aim to learn an universal policy ranker that could directly
return the ranking results for any input candidate policies.
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4 Approach
In this section, we will elaborate our PoRank framework. Po-
Rank borrows the idea from learning-to-rank literature and
explicitly solves two unique challenges in ranking policies.
Firstly, given the vastness of the policy space, we need an
effective policy representation scheme so that the ranking
module can accurately comprehend and compare different
policies. Secondly, although we can easily generate many
policies for training, we can hardly know their actual on-
line performance, therefore we are lack of ground-truth labels
for training the ranker. Overall, PoRank consists of a Pol-
icy Comparison Transformer (PCT) and a Learning-to-Rank
(LTR) module, as shown in Figure 2(a). We will introduce
each of them in the following subsections.

4.1 Learning Cross-Policy Representations
Cross-Policy Representation A policy can be considered
as a conditional distribution over actions given the state.
Therefore, a policy can be naturally represented by a set of
state-action pairs where the actions are sampled from the pol-
icy. However, such a naive policy representation could be
inefficient since the number of state-action pairs can be ex-
tremely large. Previous works address this issue by extract-
ing high-level features from the state-action pairs using deep
neural networks [Jin et al., 2022]. Although these representa-
tions reflect the features of single policies, they fail to capture
the discrepancies of different policies at some crucial states.

To this end, we aim to learn cross-policy representations by
comparing two policies’ decisions at the same set of states.
Formally, given a set of states {s1, ..., sK} and two policies
πi, πj , we can construct the following sequence of state-
action pairs by taking actions at these states:

ξi≻j =
{
(s1, a

i
1), (s1, a

j
1), · · · , (sK , aiK), (sK , ajK)

}
, (1)

where ai ∼ πi(·|s), and aj ∼ πj(·|s). We denote by
χi≻j = g(ξi≻j) ∈ Rn the cross-policy representation where
g is a function that maps ξi≻j to an n-dimensional representa-
tion space. Figure 2(a) shows the computation of cross-policy
representations. By contrast, Figure 2(b) shows the compu-
tation of single-policy representations, which is adopted in
[Jin et al., 2022]. Intuitively, cross-policy representations fo-
cus on encoding the discrepancies between policies, while
single-policy representations only encode features of single
policies. Thus, cross-policy representations are more effec-
tive for downstream learning-to-rank tasks.

Policy Comparison Transformer (PCT) Transformers are
proved to be effective for learning dependencies between dif-
ferent positions in sequences. Prior works has employed
transformers to extract features from trajectory sequences
[Lili et al., 2021; Michael et al., 2021]. However, existing
transformer architectures fail to capture the differences of two
policies’ decisions. In our work, we propose the PCT archi-
tecture to learn cross-policy representations. Unlike previous
works where the positional encodings indicate the positions
of state-action pairs in a trajectory, PCT uses positional en-
coding to distinguish the relative order of two policies. In

this way, the learned cross-policy representation χi≻j can be
directly used to predict whether πi performs better than πj .

Figure 1 shows the construction of input tokens. We first
sample K states from D and then use a linear encoder f to
map the K state-action pairs into 2K tokens:

xi
k = f(sk, a

i
k), xj

k = f(sk, a
j
k), k = 1, ...,K (2)

where i and j represent the indexes of two policies. In order
to represent the relative order of πi and πj , we introduce two
one-hot positional encodings e+ = [1, 0] and e− = [0, 1],
where e+ indicates the policy ranked higher and e− indicates
the policy ranked lower. We also use an aggregation token e0,
which is a learnable vector for aggregating the information
from the other 2K tokens [Zhu et al., 2021]. The final inputs
that indicate πi ranked higher than πj can be represented as:

zi≻j =
[
e0, x

i
1 + e+, x

j
1 + e−, · · ·xi

K + e+, x
j
K + e−

]
(3)

This construction of inputs has two advantages. First, the
two policies share the same set of states, thus their discrepan-
cies are naturally represented by the different actions taken at
these states. Second, we can easily get a mirrored representa-
tion zj≻i by simply exchange the positional encoding eα and
eβ used in zi≻j .

We adopt a widely used transformer architecture as our en-
coder [Dosovitskiy et al., 2021]. It contains L alternating lay-
ers of multi-head self-attention (MSA) and multi-layer percep-
tion (MLP) blocks. Layernorm (LN) and residual connections
are applied to the outputs of each block. For brevity, we re-
write the inputs in Equation 3 as z(0). And the computations
at each block can be represented as:

ẑl = MSA(LN(z(l−1))) + z(l−1) l = 1, · · · , L
zl = MLP(LN(ẑ(l−1))) + ẑl−1 l = 1, · · · , L

χi≻j = LN(zL).

(4)

The final cross-policy representation χi≻j is the correspond-
ing outputs of the aggregation token e0 taken from zL. Note
that χi≻j changes to χj≻i when we exchange the positional
encodings e+ and e−, but they are permutation invariant to
the order of inputted state-action pairs.

4.2 Learning to Rank Policies
In this section, we will introduce how to train the PCT in two
cases regarding to the existence of ground-truth ranking la-
bels of policies. First, we show that the policy ranking prob-
lem can be reduced to a binary classification problem since
our cross-policy representations can be directly used to pre-
dict the ranking of two policies. Second, we will introduce a
learning paradigm where multiple OPE methods are modeled
as label providers. We will also show how to train the PCT
leveraging the inaccurate labels provided by the workers.
Reducing OPR to Binary Classification We first consider
the case when there is a training set Π = {(πi, Ri)}Ti=1 con-
sisting of T deployed policies πi as well as their real expected
accumulated rewards Ri. In this case, we can directly con-
struct binary labels by comparing the performance of the two
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policies. We use an indicator 1Ri>Rj to represent the label
of a pair of policies (πi, πj). The PCT can be trained by min-
imizing the following binary cross entropy loss:

Lsup =− E
πi,πj∼Π

[(
1Ri>Rj

)
· log

(
ŷi≻j

)
+
(
1Ri≤Rj

)
· log

(
1− ŷi≻j

)]
,

(5)

where ŷi≻j = sigmoid(ϕ(χi≻j)) represents the predicted
probability that πi performs better than πj . ϕ is a function
that projects χi≻j to a real number. The final ranking of test
policies is based on their scores computed by:

scorei =
1

N

∑
j ̸=i

ŷi≻j , i = 1, ..., N, (6)

which can be interpreted as the expected probability that πi

performs better than other test policies [Rodrigo et al., 2019].
Figure 3 shows the framework of the Learning-to-rank

module. In the presence of ground-truth label yi>j , the LTR
module is simplified to Situation 1. Otherwise, we will rely
on OPE workers to provide supervision signals. Situation 2
will be illustrated bellow.
Learning from OPE Workers Supervised training is effi-
cient when the dataset Π = {(πi, Ri)}Ti=1 contains enough
policies. Unfortunately, collecting such training data can be
extremely expensive in many real applications. Meanwhile,
we note that although existing OPE methods are not robust
enough, they actually provide candidate solutions to the OPR
problem. To this end, we borrow ideas from crowdsourc-
ing domain as an alternative way to approach the OPR prob-
lem. Specifically, suppose that there exists a set of OPE al-
gorithms estimating the policy performance, we can employ

them as crowd workers to generate possibly inaccurate labels
and make use of these labels to train our models. The intu-
ition is that the inaccurate labels generated by OPE workers
are implicitly conditioned on the ground-truth performance
of policies. If we can take advantage of these labels and learn
their relationships with the ground-truth labels, our prediction
ŷi≻j would be more close to the ground-truth labels.

In the framework of PoRank, we adopt Crowd Layer (CL,
[Filipe and Pereira, 2018]) as our backend for learning from
crowd labels. CL is able to automatically distinguish the good
from the unreliable workers and capture their individual bi-
ases in many other domains, such as image annotation [Guan
et al., 2018; Li et al., 2022] and music genre classification
[Rodrigues et al., 2013]. In addition, CL is naturally com-
patible with deep learning approaches since it simply adds a
crowd layer to the deep neural networks and can be trained in
an end-to-end way. As shown in Figure 2, we add CL to the
top of our predicted probability ŷi≻j . During training, CL ad-
justs the gradients coming from these noisy labels according
to its reliability by scaling them and adjusting their bias. The
adjusted gradients are then backpropagated to PCT according
to the chain rule.

Formally, assume that there are W workers of OPE meth-
ods. For each worker wm, its estimation about the expected
return of πi is denoted as Ri

m. The goal of CL is to train a
mapping function ŷmi≻j = ζm(ŷi≻j) to predict the noisy bi-
nary label generated by worker wm: ymi,j = 1Ri

m>Rj
m

. The
overall objective can be written as:

LCL = − E
m=1,··· ,W
πi,πj∼Π

[
ym
i,j ·log

(
ŷm
i≻j

)
+(1−ym

i,j)·log
(
1−ŷm

i≻j

)]
.

(7)
The complete training procedures of PoRank is summa-
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rized in Appendix. In practice, to reduce the computational
cost brought by CL, we set ζm as a linear projection followed
by a sigmoid function. Therefore, the number of additional
parameters only grows linearly with the number of workers.
Note that the CL is only available during training since we
still use ŷi≻j to generate the predicted ranking of policies.

5 Experiments
In this section, we compare PoRank with widely-used OPE
methods on various tasks. We present ablation studies with
respect to PCT and CL, which are the main components of
PoRank. Note that hyper-parameter selection and more ex-
perimental results can be found in Appendix.

5.1 Experimental Settings
Trajectory Set We evaluate PoRank and all baseline
OPE methods on D4RL dataset consisting of various tra-
jectory sets [Fu et al., 2020]. Overall, we adopt trajec-
tory sets collected from 2 environments of Mujoco games:
HalfCheetah-v2 and Walker2d-v2. Besides, there
are 3 different types of trajectory sets for each environment:
expert, full-replay and medium. The difference be-
tween them is that the behavioral policies collecting these 3
types of trajectories show different performance. And these
behavioral policies are trained by the Soft Actor-Critic (SAC)
algorithm online [Haarnoja et al., 2018].

Policy Set To evaluate the abilities of all methods to cor-
rectly rank policies. We use the policy set released by [Jin
et al., 2022] . For each trajectory set mentioned above, there
are 2 types of policy sets ( referred as Set I and Set II)
in which the expected return of policies are evenly spaced
in the performance range of them. As mentioned in [Jin et
al., 2022], Set I and Set II aim to simulate two kinds
of OPE cases. The policies contained in Set I are trained
by offline RL algorithms (CQL [Kumar et al., 2020], BEAR
[Kumar et al., 2019], CRR [Wang et al., 2020]) and show
diverse behavioral performance. This is aligned with prac-
tical cases where the sources of policies are diverse and un-
known. Set II contains policies trained by SAC, which is
the same as the algorithm of training the behavioral policies.
Therefore, Set II corresponds to the practical OPE cases

in which the target policies share many common properties
with the policies generating the trajectory data.

Baselines 2 We compare PoRank with six state-of-the-
art baselines. i) Fitted Q-Evaluation (FQE [Hoang et al.,
2019]). It is a value-based OPE method, which learns a neu-
ral network to approximate the Q-function of the evaluated
policy by temporal difference learning on the trajectory set.
ii) Model-based estimation (MB [Paduraru, 2013]). It learns
the dynamics model of environment, and estimates the ex-
pected return of evaluated policies by computing their av-
erage returns of Monte-Carlo rollouts in the model environ-
ment. iii) Weighted importance sampling (IW [Mahmood et
al., 2014]). It leverages weighted importance sampling to cor-
rect the weight of the reward, regarding the collected trajec-
tory data distribution to the data distribution of the evaluated
policy. iv) DualDICE [Nachum et al., 2019]. It also aims to
achieve distribution correction yet without directly using im-
portance sampling. It learns an estimation of the state-action
stationary distribution for achieving distribution correction.
v) Doubly Robust (DR [Jiang and Li, 2016]). It utilizes an
unbiased estimator that leverages an estimated environment
model to decrease the variance of the unbiased estimates pro-
duced by importance sampling techniques.

Worker Set In all experiments, we use 15 models trained
by 5 OPE methods mentioned above ( IW, MB, DR,
DualDICE, and FQE, each trained 3 models with different
seeds) as our OPE workers. We present the architecture de-
tails for them in Appendix.

Evaluation Metrics We evaluate all models accord-
ing two widely-used metrics. i) Spearman’s Rank
Correlation. It is the Pearson correlation between the
ground truth rank sequence and the evaluated rank sequence
of the evaluated policies. So, a higher rank correlation indi-
cates a better policy ranker. ii) Normalized Regret@k.
It is the normalized difference between the actual value of
the best policy in the policy set, and the actual value of the
best policy in the estimated top-k set. Mathematically, it can

2We leverage a popular implementation of OPE algo-
rithms: https://github.com/google-research/google-research/tree/
master/policy eval. It contains the first 5 baselines used in our paper
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HalfCheetah-v2 Walker2d-v2

Rank Correlation ↑ Regret @1 ↓ Rank Correlation ↑ Regret @1 ↓

Set I Set II Set I Set II Set I Set II Set I Set II

Expert

PoRank (Ours) 0.65 ± 0.10 0.35 ± 0.03 0.00 ± 0.00 0.32 ± 0.02 0.85 ± 0.12 0.83 ± 0.08 0.01 ± 0.01 0.02 ± 0.03
FQE -0.53 ± 0.14 0.31 ± 0.10 0.23 ± 0.06 0.60 ± 0.07 0.62 ± 0.20 -0.08 ± 0.03 0.04 ± 0.07 0.02 ± 0.07
DualDICE 0.47 ± 0.18 0.27 ± 0.06 0.38 ± 0.02 0.22 ± 0.04 0.52 ± 0.16 0.31 ± 0.14 0.43 ± 0.07 0.28 ± 0.03
MB 0.39 ± 0.04 0.24 ± 0.08 0.34 ± 0.05 0.18 ± 0.02 0.46 ± 0.11 0.29 ± 0.12 0.39 ± 0.03 0.23 ± 0.08
IW 0.18 ± 0.03 0.09 ± 0.02 0.23 ± 0.04 0.02 ± 0.01 0.24 ± 0.07 0.06 ± 0.03 0.28 ± 0.02 0.14 ± 0.07
DR -0.12 ± 0.03 -0.18 ± 0.04 0.13 ± 0.06 0.08 ± 0.01 0.14 ± 0.09 0.12 ± 0.06 0.19 ± 0.03 0.04 ± 0.02

Full-replay

PoRank (Ours) 0.72 ± 0.19 0.34 ± 0.08 0.01 ± 0.02 0.31 ± 0.01 0.82 ± 0.04 0.81 ± 0.17 0.09 ± 0.06 0.21 ± 0.09
FQE 0.24 ± 0.18 0.52 ± 0.01 0.36 ± 0.09 0.03 ± 0.02 0.71 ± 0.13 -0.19 ± 0.19 0.06 ± 0.04 0.48 ± 0.02
DualDICE -0.57 ± 0.18 0.06 ± 0.09 0.53 ± 0.08 0.27 ± 0.03 -0.26 ± 0.14 -0.24 ± 0.18 0.42 ± 0.01 0.28 ± 0.06
MB 0.23 ± 0.04 -0.19 ± 0.02 0.17 ± 0.06 0.34 ± 0.07 0.63 ± 0.13 0.71 ± 0.03 0.08 ± 0.01 0.14 ± 0.09
IW -0.24 ± 0.01 -0.31 ± 0.04 0.42 ± 0.07 0.46 ± 0.02 0.11 ± 0.09 -0.65 ± 0.08 0.09 ± 0.01 0.43 ± 0.08
DR 0.03 ± 0.04 0.18 ± 0.03 0.34 ± 0.08 0.09 ± 0.02 0.31 ± 0.06 0.02 ± 0.07 0.06 ± 0.04 0.18 ± 0.05

Medium

PoRank (Ours) 0.82 ± 0.13 0.81 ± 0.04 0.02 ± 0.01 0.03 ± 0.04 0.82 ± 0.11 0.72 ± 0.13 0.13 ± 0.02 0.08 ± 0.03
FQE 0.48 ± 0.12 -0.12 ± 0.09 0.05 ± 0.03 0.12 ± 0.08 0.71 ± 0.14 0.72 ± 0.19 0.08 ± 0.04 0.13 ± 0.01
DualDICE -0.42 ± 0.19 -0.28 ± 0.11 0.32 ± 0.07 0.13 ± 0.02 0.43 ± 0.17 0.23 ± 0.14 0.03 ± 0.08 0.28 ± 0.06
MB 0.12 ± 0.03 -0.19 ± 0.14 0.23 ± 0.02 0.12 ± 0.01 0.47 ± 0.11 0.02 ± 0.10 0.18 ± 0.03 0.13 ± 0.02
IW -0.53 ± 0.02 -0.78 ± 0.04 0.63 ± 0.01 0.57 ± 0.06 0.27 ± 0.09 0.67 ± 0.03 0.38 ± 0.01 0.27 ± 0.09
DR 0.63 ± 0.01 0.17 ± 0.04 0.03 ± 0.08 0.28 ± 0.09 0.07 ± 0.05 0.37 ± 0.02 0.28 ± 0.04 0.38 ± 0.08

Table 1: Comparing PoRank with other OPE baselines.

be computed by regret@k =
Vmax−Vtopk

Vmax−Vmin
, where Vmax and

Vmin is the expected return of the best and the worse policies,
respectively, in the entire set, while Vtopk is the estimated top
k policies. So, a lower regret value indicates a better policy
ranker.

5.2 Experimental Results
Comparison with Other OPE Baselines We evaluated Po-
Rank against five baseline methods in two environments. Fig-
ure 1 presents the rank correlation and regret@1 values of the
estimated rank sequences generated by each model.

Our results demonstrate that PoRank consistently outper-
forms the baseline methods. Specifically, PoRank achieved
the highest rank correlations in 11 of the 12 policy sets and
the lowest regret@1 values in 7 sets. This indicates PoRank’s
capability to deliver robust and effective performance across
diverse policy scenarios.

Notably, PoRank excels in learning from noisy labels gen-
erated by other OPE workers. In our experiments, the OPE
workers, which generate these noisy labels for PoRank, were
directly sampled from the trained models of the baselines.
For instance, in the Set I of the expert trajectory set in
HalfCheetah-v2, while all OPE baselines exhibited poor per-
formance , PoRank achieved a high rank correlation of about
0.65—despite relying on these low-quality labels. We at-
tribute this resilience to two key factors: i) The Policy
Comparison Transformer (PCT) in PoRank effectively mit-
igates the biases of inaccurate workers. ii) The crowd layer
adeptly distinguishes reliable OPE workers from unreliable
ones and adjusts for their individual biases. In conclusion,
PoRank demonstrates highly effective and robust OPR results
across a variety of policy sets. It effectively reduces the bi-
ases induced by OPE workers, thereby outperforming these
workers significantly.

Comparing with Other Label Aggregation Methods We
propose to use PCT and crowd layer to aggregate the infor-
mation of multiple OPE workers. There are also other simple

mechanism to aggregate worker information. For example,
ranking policies by the average score of workers (denoted by
Average) or ranking policies by the number of worker votes
(denoted by Major Voting).

Environment Avg. Score Major Voting Ours Ours with RA
HalfCheetah-expert -0.34 -0.27 0.71 0.72

HalfCheetah-full-replay 0.24 0.31 0.74 0.73
HalfCheetah-medium 0.32 0.57 0.81 0.80

Walker2d-expert 0.53 0.23 0.85 0.83
Walker2d-full-replay 0.41 0.31 0.82 0.75
Walker2d-medium 0.21 0.29 0.80 0.87

Table 2: Performance with different label aggregation methods.

Batch size Avg. Rank Correlation

8 0.21
16 0.27
32 0.37
64 0.39

128 0.56
256 0.65
512 0.64
1024 0.66
2048 0.65

Table 3: Performance with different batch size of state-action pairs.

Actually, the superiority of CL over these baslines has been
demonstrated in [Filipe and Pereira, 2018]. However, it is
still valuable to reproduce this superiority in the context of
OPR. Specifically, we report the rank correlations in the fol-
lowing Table 2. We can see from the first four columns that
our method dominates these two baselines in all of the six
environements. Note that the framework of PoRank can also
combine with more advanced crowdsourcing methods other
than CL. On the other hand, the line of works in rank aggre-
gation, focusing on aggregating a set of pairwise comparisons
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HalfCheetah-v2 Walker2d-v2

Rank Correlation ↑ Regret @1 ↓ Rank Correlation ↑ Regret @1 ↓

Set I Set II Set I Set II Set I Set II Set I Set II

Expert

PoRank (PCT w/ CL) 0.65 ± 0.10 0.35 ± 0.03 0.00 ± 0.00 0.32 ± 0.02 0.85 ± 0.12 0.83 ± 0.08 0.01 ± 0.01 0.02 ± 0.03
PCT w/ GL 0.43 ± 0.14 0.63 ± 0.10 0.13 ± 0.06 0.05 ± 0.07 0.82 ± 0.20 0.78 ± 0.03 0.04 ± 0.07 0.05 ± 0.07
SOPR-T w/ CL -0.47 ± 0.18 0.47 ± 0.06 0.58 ± 0.02 0.52 ± 0.04 0.72 ± 0.16 0.71 ± 0.14 0.13 ± 0.07 0.18 ± 0.03
SOPR-T w/ GL -0.29 ± 0.04 0.70 ± 0.08 0.34 ± 0.05 0.18 ± 0.02 0.56 ± 0.11 0.80 ± 0.12 0.19 ± 0.03 0.03 ± 0.08

Full-replay

PoRank (PCT w/ CL) 0.72 ± 0.19 0.34 ± 0.08 0.01 ± 0.02 0.31 ± 0.01 0.82 ± 0.04 0.81 ± 0.17 0.09 ± 0.06 0.21 ± 0.09
PCT w/ GL 0.57 ± 0.18 0.37 ± 0.06 0.08 ± 0.02 0.32 ± 0.04 0.72 ± 0.16 0.81 ± 0.14 0.03 ± 0.07 0.18 ± 0.05
SOPR-T w/ CL -0.37 ± 0.18 0.36 ± 0.06 0.58 ± 0.02 0.52 ± 0.04 0.74 ± 0.16 0.71 ± 0.11 0.13 ± 0.07 0.19 ± 0.03
SOPR-T w/ GL -0.29 ± 0.04 0.24 ± 0.28 0.34 ± 0.05 0.08 ± 0.02 0.66 ± 0.11 0.79 ± 0.12 0.19 ± 0.03 0.23 ± 0.08

Medium

PoRank (PCT w/ CL) 0.82 ± 0.13 0.81 ± 0.04 0.02 ± 0.01 0.03 ± 0.04 0.82 ± 0.11 0.72 ± 0.13 0.13 ± 0.02 0.08 ± 0.03
PCT w/ GL 0.73 ± 0.14 0.88 ± 0.10 0.03 ± 0.01 0.00 ± 0.00 0.72 ± 0.20 0.88 ± 0.03 0.14 ± 0.07 0.02 ± 0.07
SOPR-T w/ CL -0.27 ± 0.18 0.47 ± 0.06 0.58 ± 0.02 0.02 ± 0.04 0.72 ± 0.16 0.81 ± 0.14 0.14 ± 0.07 0.08 ± 0.03
SOPR-T w/ GL 0.59 ± 0.04 0.84 ± 0.08 0.14 ± 0.05 0.08 ± 0.02 0.76 ± 0.11 0.89 ± 0.12 0.19 ± 0.03 0.03 ± 0.08

Table 4: Ablations. Comparison of policy ranking performance among PoRank (PCT with CL), and its ablation models PCT with
GL, SOPR-T with GL, and SOPR-T with CL across different policy sets. Models with PCT architectures consistently achieves higher
scores than models with SOPR-T architectures, underscoring the advantage of PCT in generating meaningful cross-policy representations.
Notably, PCT with CL and SOPR-T with CL show competitive performance against their GL counterparts, despite lacking additional
supervised information from deployed policies, affirming the effectiveness of the CL in learning from OPE-generated noisy labels.

into a ranking list. Therefore, we use a more recent and sim-
ple RA method [Maystre and Grossglauser, 2017] (denoted
by RA) to replace Equation 6 in our work. From the last two
columns we can see that this method indeed further improves
PoRank in some evironments. However, this does not con-
tradicts to our main contribution: modeling the OPR problem
from the perspective of crowdsourcing.

Selection of the Batch Size of State-Action Pairs In the
training phase, the batch size of state-action pairs feeded
into the Transformer is an important hyper-parameter in our
model. It play the role in balancing the computational cost
and the performance. We chose the number 256 as the batch
size. This choice is supported by the experimental results re-
ported in Table 3, which show the averaged rank correlations
of our model with the batch size growing. We can find that
when the batch size is larger than 256, the performance of our
model tends to be stable.

Ablations We conducted ablation studies to evaluate the
importance of each component in our framework, using the
same policy sets as the primary experiments. The results are
depicted in Table 4. In our framework, termed PoRank, we
integrate two key components: the Policy Comparison Trans-
former (PCT) for generating cross-policy representations, and
the Crowd Layer (CL) that aggregates information from OPE
workers. This integration allows PoRank to rank policies
without requiring additional ground truth labels. We com-
pared PCT with CL (PoRank) against three different abla-
tions: i) PCT with GL: This model uses our PCT architec-
ture but discards the CL, relying on extra ground truth labels
(GL) for training. It is trained using additional sets of de-
ployed policies released by [Jin et al., 2022]. Without CL, it
lacks the capability to learn from OPE workers. ii) SOPR-T
with GL: [Jin et al., 2022], a transformer-based model de-
signed to learn individual policy representations. Unlike PCT,
SOPR-T does not focus on capturing the differences between
policies at the decision level. Like PCT with GL, it also
requires extra ground truth labels for training. iii) SOPR-T

with CL: This variation of SOPR-T attempts to learn from
OPE workers by incorporating the CL, similar to PoRank, but
does not require additional supervised information from de-
ployed policies.

As shown in Table 4, PCT with CL outperforms
SOPR-T with CL on 8 policy sets, while PCT with GL
surpasses SOPR-T with GL on 8 policy sets. This sug-
gests that our cross-policy representation, which aims to dis-
cern the nuanced decision differences between policies, ex-
hibits stronger representational power compared to single-
policy representations used by SOPR-T. Moreover, PCT
with CL (PoRank) and SOPR-T with CL both demon-
strate competitive performance against their counterparts
PCT with GL and SOPR-T with GL, despite the ab-
sence of additional supervised information from deployed
policies. This underscores the effectiveness of using the CL
to learn from OPE-generated noisy labels when extra policies
providing supervised labels are not readily available.

6 Conclusions
In this study, we introduced PoRank, a novel framework de-
signed to learn robust off-policy rankers from a set of unre-
liable off-policy estimators. Unlike existing approaches that
require the deployment of policies online for gathering super-
vision signals, PoRank innovatively leverages labels gener-
ated by existing Off-Policy Evaluation (OPE) methods. This
feature significantly reduces the training cost of the ranker.
Our theoretical analysis elucidates the relationships between
a worker’s bias, variance, and overall quality. We further
contribute a unique Policy Comparison Transformer (PCT)
architecture, developed to discern the relative discrepancies
between policies through effective cross-policy representa-
tions. Empirical results confirm PoRank’s superior perfor-
mance over baseline models across diverse tasks and policy
sets. Importantly, PoRank demonstrates excellent generaliz-
ability across various policy sets. Our ablation studies fur-
ther validate the effectiveness of each individual component
within the PoRank framework.
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