
DiTAC: Discrete Teamwork Abstraction
for Ad Hoc Collaboration

Jing Wanga, Pengjie Gub, Mengchen Zhaoc,*, Guangyong Chend, Furui Liud and Pheng-Ann Henga

aThe Chinese University of Hong Kong
bNanyang Technological University

cSouth China University of Technology
dZhejiang University

Abstract. Training autonomous agents to collaborate with un-
known teammates in cooperative multi-agent environments remains
a fundamental challenge in ad hoc teamwork research. Conventional
approaches rely heavily on online interactions with arbitrary team-
mates under the assumption of full observability. However, in real-
world scenarios, teammate policies are often inaccessible, making
historical trajectory rollouts a more practical alternative. We propose
DiTAC, a method that learns discrete teamwork abstractions for ad
hoc collaboration by automatically extracting latent cooperation pat-
terns from short trajectory segments and adapting effectively to di-
verse teammate behaviors. To mitigate the out-of-distribution chal-
lenge, we constrain learned representations within a discrete code-
book. Furthermore, we employ a masked bidirectional transformer
architecture to infer teammate behaviors from local observations,
thereby relaxing the full observability assumption. Empirical results
demonstrate that DiTAC significantly outperforms existing baselines
and its variants across widely-used ad hoc teamwork tasks.

1 Introduction

The fast growth of autonomous agents, from robots to software, is
opening up new chances and challenges in real-life applications.
These agents often need to work together on the fly with others
they haven’t met before [1]. For instance, in disaster response,
agents must collaborate rapidly despite unfamiliarity and privacy
constraints. In gaming, virtual agents must be able to smoothly help
various human players [35, 5, 9, 13], highlighting the need for rapid
adaptation. These scenarios underscore the growing importance of
ad hoc teamwork in autonomous systems research [26, 2, 17].

Existing research typically tackles this problem by employing an
online learning paradigm, in which agents are trained with a pre-
established set of teammates through environment interactions be-
fore they are deployed [1, 10, 20]. However, in numerous situations,
this form of online interaction is impractical due to high associated
costs and potential risks. These costs often involve extensive sim-
ulations or real-world testing, while risks might include damage to
expensive equipment or hazards to human safety. Moreover, in com-
plex domains that demand effective generalization, there is often a
preference for leveraging large, pre-collected trajectory datasets. In
light of these factors, our study addresses a subset of ad hoc team-

∗ Corresponding Author. Email: zzmc@scut.edu.cn

work challenges by exploring an offline data setting, where agents
have access solely to previously collected trajectory data.

Addressing the problem of offline ad hoc teamwork poses three
primary challenges: i) The first challenge lies in creating an offline
learning framework that enables agents to generalize across a diverse
range of teammates. This involves utilizing a substantial dataset col-
lected beforehand to strengthen the agents’ ability to adapt to various
team dynamics. ii) The second challenge involves enabling agents to
infer collaborative strategies from short trajectory segments, which
encode recurring teamwork patterns (e.g., synchronized food collec-
tion in foraging tasks), even when cooperating with previously un-
seen teammates. iii) Lastly, handling teamwork situations that are
not represented in the training dataset’s distribution presents an ad-
ditional problem. This out-of-distribution issue often markedly com-
promises performance in single-agent offline reinforcement learning.
In the context of ad hoc teamwork [16, 11, 14], this issue becomes
even more complex due to the multi-agent setting.

To tackle offline ad hoc teamwork challenges, we propose DiTAC,
a transformer-based framework that extracts discrete teamwork ab-
stractions from short trajectory segments. Unlike prior approaches
relying on continuous latent variables [22, 33] or predefined roles
[15, 32], DiTAC encodes multi-agent interactions into a finite set
of interpretable codes. It leverages masked bidirectional transform-
ers [31] and VQ-VAE [30] to infer latent cooperation patterns from
partial trajectories. This grounding enables generalization to un-
seen teammates by matching observed behaviors to learned patterns,
even under partial observability. DiTAC achieves strong generaliza-
tion in ad hoc teamwork via three key innovations: discrete team-
work abstractions that compactly encode latent cooperation strate-
gies, masked transformers that model partial observability, and de-
cision grounding in discrete latent space for robustness to out-of-
distribution scenarios. Extensive experiments validate DiTAC’s ef-
fectiveness, showing improved generalization and robustness across
prompt lengths and codebook sizes.

2 Related Works

2.1 Ad Hoc Teamwork and Trajectory-Based Behavior
Modeling

Ad hoc teamwork focuses on enabling agents to collaborate with un-
known teammates without prior coordination. Early approaches like

PLASTIC [1] defined finite teammate types but struggled in com-
plex settings. Recent methods infer teammate behaviors from inter-
actions: BRDiv [24] generates diverse teammate policies for robust
training, while AATEAM [7] uses attention to model teammate
types from states. However, these methods require online interac-
tions and full observability. To address partial observability, LIAM
[22] estimates teammate actions from local history, and ODITS
[12] infers teamwork variables via information regularization. Un-
like these works, we focus on offline ad hoc teamwork, where agents
learn collaborative strategies from pre-collected trajectory segments.
This aligns with hierarchical RL frameworks like Option Discovery
[28], where sub-trajectories represent reusable skills. However, prior
work lacks explicit modeling of team-level strategies (e.g., synchro-
nized actions), which our method achieves through trajectory seg-
mentation and discrete codebooks.

2.2 Offline Multi-Agent Reinforcement Learning

Offline MARL trains policies using pre-collected datasets to avoid
risky online interactions. Methods like BCQ [11] and CQL [14] ad-
dress distributional shifts in single-agent settings. In MARL, MADT
[19] uses transformers for offline coordination but assumes known
teammates during training. RODE [32] learns role embeddings from
trajectories but requires predefined roles, limiting adaptability. Re-
cent studies demonstrate that transformers [31] are capable of mod-
eling complex, high-dimensional distributions of semantic concepts
on a large scale. This includes achieving effective zero-shot gener-
alization in language tasks [3] and generating images that are out-
of-distribution [25]. And it is recently applied to solve RL problems
for its efficiency and scalability when modeling long decision mak-
ing. Decision Transformer [6] for offline RL treats learning a policy
as a sequential modeling problem, which bridges sequence modeling
and transformers with RL. Furthermore, instead of using prompts to
extract knowledge from the pretrained model in NLP, the RL agent
in Prompt-DT [34] is required to imitate the provided trajectory
prompts to reproduce the policy that generates these trajectories. Our
work bridges this gap by recasting offline ad hoc teamwork as con-
ditional sequence modeling, inspired by Decision Transformer [6]
and Prompt-DT [34]. Unlike these single-agent methods, we em-
ploy masked transformers to process partial trajectory segments and
infer teamwork abstractions. This approach generalizes to unseen
teammates without role predefinition, a key limitation of [32].

2.3 Discrete Representation Learning for
Collaboration

Discrete latent spaces improve robustness to distribution shifts in RL.
VQ-VAE [30] compresses continuous data into interpretable codes,
while MaskDP [18] uses masking for scalable decision-making.
In MARL, LIAM [22] models teammate behaviors as latent vari-
ables but lacks explicit strategy-level abstraction. Recent work ex-
plores discrete representations for multi-agent coordination: Diverse
Skill Discovery [29] generates diverse agent behaviors via reward
randomization, while RODE [32] decomposes tasks into role embed-
dings. Our method uniquely combines these ideas: we use VQ-VAE
to map team trajectory segments to discrete codes representing team-
work situation. This approach avoids the combinatorial complexity
of coordination graphs while grounding abstraction in observable tra-
jectories, addressing partial observability and OOD challenges.

3 Preliminaries

We aim to train an offline robust ad hoc agent that could effectively
interact with unknown teammates under partial observability without
further joint learning.

...

Historical Trajectories

Sample

Ad hoc AgentAd hoc Agent

Environmemt

Joint Action aShared Reward R

1 2 3 4 K... ...

Agent VQ Codebook

Teammate setTeammate set

.........

Sample

Ad hoc AgentAd hoc Agent

Environmemt

Joint Action aShared Reward R

Agent VQ Codebook

1

2

3

4

K

...

Teammate Set Teammate Set

Learn

...

Sample

Ad hoc AgentAd hoc Agent

Environmemt

Joint Action aShared Reward R

Interaction

Interaction ...

Historical Trajectories

Agent VQ Codebook

1

2

3

4

K

...

Teammate Set Teammate Set

Teammate Set Teammate Set

...

Sample

Ad Hoc AgentAd Hoc Agent

Environmemt

Joint Action aShared Reward R

Teammate setTeammate set

.

.

.

.

.

.

Offline Dataset

Learn

Figure 1: Illustration of the cooperation process among the ad hoc
agent with random teammates.

Figure 2: Illustration of learning discrete agent codebook from offline
dataset.

3.1 Dec-POMDP with an additional teammate set

We model the problem as a decentralized Partially Observable
Markov Decision Process (Dec-POMDP) [21] with an additional
set of teammates’ possible policies Γ [12], which can be represented
as a tuple ⟨N ,S,A,O, P,R,O,Γ⟩. It consists of a set of agents
N = {1, 2, . . . , n}, a finite global states set S, the joint action space
A = ×iAi, where ai ∈ Ai is the independent action of agent i, and
the joint observation space O = ×iOi, where oi ∈ Oi denotes the
partial observation of each agent i can fetch in the partially observ-
able environments. O denotes the observation function that is used to
derive the joint observation o = O(s, i), P (s′, | s,a) denotes the
probability of state s′ transited from the state s by taking the joint
action a, R(s,a) is the reward function that maps a state s and a
joint action a to a immediate team reward r ∈ R.

We denote the ad hoc agent under our control as the agent i,
and all other agents as −i. Without loss of generality, the policy
of the ad hoc agent is denoted by πi, and the joint policy of other
agents is denoted by π−i. Γ includes a set of pretrained or prede-
fined policies for teammate agents −i to adopt for cooperation. We
illustrate the problem in the Fig. 1, some arbitrary agents are sam-
pled from unknown teammate set Γ. At each timestep t, all agents
receive their partial information, take the joint action a = (ai, a−i)
where ai ∼ πi, a−i ∼ π−i, and receive a team-shared reward r. The
goal of the ad hoc agent is to maximize the cumulative team-shared
reward Eπi,π−i

[∑H−1
t=0 γtr1t+1

]
when cooperating with N − 1 arbi-

trary agents π−i sampled from Γ, where γ is the discounted factor.

3.2 Transformer-based Offline RL

In previous works, ad hoc agent is trained online, where it coop-
erates with some pretrained teammates to iteratively take joint ac-
tions and receive feedback from the environment. However, this may

Figure 3: Framework of learning Discrete Teamwork abstraction for Ad hoc Collaboration (DiTAC). Trajectory segments τ prompt are processed
to extract teamwork situation abstractions, which are discretized into a codebook of reusable strategies.
not always be feasible as the high cost of collecting diverse pre-
trained teammates and RL algorithms may require a large number
of training data due to low sample efficiency. We consider the of-
fline RL setting [16], which aims to learn a policy from an offline
dataset D, where D owns a large number of trajectories that are pre-
collected using some unknown joint behavior policies. A trajectory
τ = {r̂1, o11, a1

1, o
1
2, o

1
2, . . . , r̂

t . . . otn−1, a
t
n−1, o

t
n, o

t
n} is sampled

using a joint behavior policy in the environment, where r̂ is the cumu-
lative rewards (reward-to-go) from the current time step till the end of
the episode. When training with offline collected data, r̂t =

∑T
i=t r

i.
During testing, r̂t = R⋆ −

∑t
i=0 r

i where R⋆ is the targeted total
return for an episode. The ad hoc agent is expected to find the op-
timal policy using only the dataset D without interacting with any
teammates in the cooperative environment.

4 Method
In this section, we introduce our proposed DiTAC model that auto-
matically learns a discrete latent agent codebook and conditions only
on partial observations for cooperating with unknown teammates to
maximize the team-shared reward.

4.1 Overview

As shown in the Figure 2, we aim to learn a robust policy from an
offline dataset D, which contains a large number of trajectories pre-
collected with some unknown teammate behavior policy π ∼ Γtrain.
Our approach models teamwork abstraction from short trajectory
segments that encode recurring multi-agent behaviors. DiTAC cap-
tures teamwork abstraction from historical interactions to guide pol-
icy generation for zero-shot coordination.

4.2 Framework Details and Data Flow

Figure 3 illustrates the end-to-end architecture of DiTAC, which inte-
grates a teamwork abstraction network θp and a causal transformer-
based decision module θdt. The teamwork encoder processes masked
trajectory segments τ prompt to infer latent teamwork abstractions.
Specifically, as presented in Figure 4, the encoder receives a segment
of L∗ steps of team interactions, where a subset of agents’ observa-
tions (o) and actions (a) are randomly masked (e.g., replaced with
zeros) in training stage. This masking simulates partial observabil-
ity and forces the model to infer missing teammates’ behaviors from
contextual information. The encoder’s bidirectional attention mech-
anism enables it to capture dependencies across all timesteps and
agents within τ prompt, generating a continuous latent representation
zi for each agent. These representations are then discretized via a

vector-quantized codebook E to produce Ei, which encodes distinct
agent behavior types. The teamwork abstraction ETeam, derived by
averaging all Ei, is concatenated with the ad hoc agent’s recent tra-
jectory τ dt and fed into the decision module. The causal transformer
in θdt autoregressively predicts actions based on this combined in-
put, guided by the inferred teamwork dynamics. This modular design
ensures that DiTAC generalizes to unseen teammates by grounding
cooperation strategies in discrete abstractions.

The input τ input is a segment cropped from an episode trajectory τ
and then separated into two parts to feed into the prompt and causal
transformer respectively. At every time step, DiTAC takes τ input as
input, which contains the most recent L⋆ + L step trajectory infor-
mation. In details, L⋆ steps teamwork interactions

τ prompt = {r̂△+1, o△+1
1 , a△+1

1 , o△+1
2 , o△+1

2 , . . . ,

r̂L
△+L⋆

. . . o△+L⋆

n−1 , a△+L⋆

n−1 , o△+L⋆

n , o△+L⋆

n }

are fed into the prompt structure, and L steps ad hoc agent i personal
trajectory

τ dt = {r̂t−L⋆+1, ot−L⋆+1
i , at−L⋆+1

i , . . . , r̂t−L⋆+Lot−L⋆+L
i , at−L⋆+L

i }

are injected into the causal transformer structure, where△ = (L⋆ +
L). The trajectory prompt τ prompt contains the short trajectory seg-
ment, aiming to capture critical teamwork situation abstractions. For
example, a 5-step segment might encode a ’flanking prey’ strategy
in predator-prey tasks. The trajectory input τ dt of the specific ad hoc
agent is utilized to model the sequential decision-making condition
on its partial observation along with the teamwork abstraction. Then
the two modules are jointly trained with reconstruction loss and ac-
tion prediction loss. Then the two modules can be jointly trained with
a reconstruction loss Lrec among prompt information and an action
prediction loss LCE among the partial observation.

4.3 Learning Teamwork Abstraction

We aim to learn the teamwork abstraction from the L-steps before
interactions τ prompt among all agents, up to horizon length L⋆, which
encode collaborative strategies. These segments are compressed into
discrete codes via a codebook, where each code represents a reusable
teamwork pattern. We assume the existence of some discrete latent
codebook that represents finite agent’s behavior type, and at each
time step, the latent embedding EAgent contains information about
the current environment dynamics perceived by the agent and the
cooperation strategy with teammates. Hence, we employ the vector-
quantization method VQ-VAE [30] to learn discrete abstractions of
agent behavior type along with a masked bi-directional transformer.

Figure 4: Details of learning discrete teamwork abstraction from bidirectional transformers via codebook integration and masking mechanism.
To simplify the notation, we denote t−(L⋆+L) by△, which stands for the last timestep before the (L⋆+L)-step sampled trajectory segment
respect to current timestep t. The grey shapes with dashed border represents the randomly masked agents’ information. We aim to learn extract
the discrete teamwork abstraction ETeam via this module and then inject it into the following causal transformer for decision making.

Algorithm 1 DiTAC Training

Require: Masked Bi-Directional Transformer θp, causal trans-
former θdt, overall network architecture θ, agent number N , of-
fline dataset D, batch size M , learning rate α.

1: for step in training steps do
2: for m = 1 to M do
3: Sample a trajectory τm of length L⋆ + L from D
4: Process the trajectory τm into τ prompt

m and τ dt
m segments

5: end for
6: Get a batch B =

{
τ prompt
m , τdt

m

}M

m=1
7: τrec, ETeam = θp (τ

prompt) ,∀τ prompt ∈ B
8: apred = θdt

(
ETeam, τ

input) , ∀τ input ∈ B
9: Compute Lrec,LV Q−V AE ,LCE

10: θp ← θp − α∇θp (Lrec + LV Q−V AE)
11: θ ← θ − α∇θLCE

12: end for

During the training stage, we randomly mask some agents’ infor-
mation of the prompt input τ prompt. For example,

masked(τ prompt) = {r△+1, o△+1
1 , a△+1

1 , , , . . . ,

rL
△+L⋆

. . . o△+L⋆

n−1 , a△+L⋆

n−1 , o△+L⋆

n , o△+L⋆

n }

denotes masked Agent2 information from τ prompt. Masked inputs are
processed by a bidirectional transformer to generate latent embed-
dings z that is fused with teammate information.

To capture each agent behavior type within L⋆ steps, we maintain
a codebook E ⊂ RK×D , where K represents the size of the discrete
latent space, and D denotes the dimension of the latent embedding
vector. As shown in Figure 4, we discretize the latent embedding
information of the i − th agent zi = (z△+1

i , z△+2
i , . . . , z△+L⋆

1) ∈
RD into Ei by looking up the nearest neighbor embedding from the
codebook:

Ei = DISCRETIZE(zi) = ej ,

where j = argminj ∥zi − ej∥2 , ej ∈ E. We feed all discrete
agent latent embeddings Ei to the bidirectional decoder for further

processing, which specifically involves reconstructing the teamwork
trajectory τ prompt. Through this process, we learn the discretized vec-
tor codebook that includes finite agent behavior types in Eq.(1) and
Eq.(2):

Lrec(θp) = Eτprompt∼D
(
τ prompt − τrec

)2
, (1)

where τrec is the reconstructed prompt trajectory.

LVQ-VAE(θp) = Eτprompt∼D

[
1

N

N∑
i=1

∥sg(zi)− Ei∥22

+
β

N

N∑
i=1

∥zi − sg(Ei)∥22

]
(2)

The function sg(·) refers to a stop-gradient operation that blocks
gradients from flowing into the corresponding argument. The first
term and second term in Eq.(2) is the codebook loss and commit-
ment loss respectively, which encourages the discretized Ei and zi
to be mutually close to each other. The hyperparameter β controls
the extent to which the code can change, and we set the value of β to
0.25 as the original VQ-VAE algorithm.

Codebook Integration and Masking Mechanism The discretiza-
tion step (Figure 4, middle) plays a critical role in enforcing general-
ization. This process compresses diverse teammate behaviors into a
finite set of discrete codes, mitigating out-of-distribution issues dur-
ing inference. During training, random masking is applied to τ prompt

to simulate scenarios where the ad hoc agent lacks full observabil-
ity (e.g., in disaster zones or competitive games). For instance, if
Agent2’s observations and actions are masked, the encoder must re-
construct its behavior using correlations learned from other agents’
unmasked data. The bidirectional transformer’s self-attention layers
enable cross-agent reasoning, allowing the model to fill in missing
information by attending to contextual patterns. The codebook loss
LVQ-VAE further regularizes the latent space by aligning zi with dis-
crete codes, ensuring that similar teamwork scenarios map to neigh-
boring embeddings. This combination of masking and discretization
ensures robustness to both partial observability and novel teammates.

Algorithm 2 DiTAC Testing

Require: Testing with teammates’ behavioral policies π−i ∼ ΓEval.

1: Initialize trajectory segment τ with zeros, desired reward-to-go
r̂ = R⋆

2: t = 0
3: while not done do
4: if step t > L⋆ + L then
5: Construct τ prompt with τt−(L⋆+L) ∼ τt−L {Mask all team-

mates information with zero except the adhoc agent}
6: else
7: Construct τ prompt with τ0 ∼ τL⋆

8: end if
9: Construct τ dt

10: Compute ETeam with θp(τ
prompt)

11: Compute apred with θ(ETeam, τ
input)

12: Step the joint action (apred, a−i) { a−i ∼ π−i }
13: Receive feedback from env: o, a, r, r̂ ← r̂ − r
14: Append [r̂, o, a] to recent history τ
15: t += 1
16: end while

We then average all agent embeddings to represent teamwork ab-
straction ETeam and pass them to the following causal transformer
structure for further action prediction. In the evaluation stage, the
masked bi-directional transformer structure allows us to infer the
teamwork abstraction condition on only partial observations of the
ad hoc agents directly, by applying masking patterns for the input
requiring other teammates’ information. Then the teamwork abstrac-
tion vector is injected with τ dt into the causal transformer structure
to guide the sequential decision-making.

4.4 Algorithms

DiTAC integrates two core modules: a bi-directional transformer-
based teamwork abstraction network θp and a causal transformer-
based decision module θdt. The ad hoc agent’s policy πi is instan-
tiated via θdt, which generates actions autoregressively based on its
recent trajectory τ dt and a latent teamwork abstraction:

ai ∼ πi(τ
dt, ETeam; θdt) (3)

The training and inference procedures are summarized in Algo-
rithm 1 and Algorithm 2, respectively. During training, the encoder
θp receives fully observable trajectory segments τ prompt with ran-
domly masked agents to learn robust team representations. The de-
coder reconstructs the original input, optimized via a reconstruction
loss Lrec and a vector quantization loss LVQ-VAE. Simultaneously, the
decision module θdt is trained to predict actions using cross-entropy
loss LCE:

L(θ) = Lrec(θp) + LVQ-VAE(θp) + LCE(θ) (4)

At test time, only the ad hoc agent’s observations remain un-
masked, while teammate data is masked. The encoder infers a latent
team abstraction from this partial input, which guides the decision
module in generating context-aware actions. This design enables co-
ordination with unseen teammates under partial observability.

5 Experiments
We evaluate DiTAC with evaluation teammate set on three distinct
environments in varying agent number settings. We have chosen

three multi-agent cooperative environments as benchmarks. We con-
duct each experiment with 4 different random seeds and then illus-
trate the average teamwork episode return with a 95% confidence
interval over the standard deviation.

5.1 Environments

Level-based Foraging (LBF) [23] We inherit the setting used in the
CSP [8] work: a 20×20 grid with 2 agents and 4 food items. Agents
perceive a 5×5 local grid and execute discrete actions (move or col-
lect). As modified in CSP, agents need to cooperate with each other
to reach around a food and implement the action "collect" simulta-
neously to successfully capture the food, which is designed to satisfy
the requirement for enhancing cooperation among agents. Different
teammate policies can be reflected into the food collecting order, the
challenge for training a robust ad hoc agent is learning to flexibly
cooperate with various teammates to acquire the food.

Predator-Prey (PP) [4] This environment is a more complex
10×10 grid task requiring agents to collaboratively hunt moving prey.
Specifically, each prey moves randomly during the game, which
brings huge challenge for predators to learn to capture the prey
collaboratively. Coordination within this environment is manifested
through strategic prey chasing and the distribution of labor. We adopt
three different scenarios to verify the ad hoc agent’s ability to coop-
erate with different number of teammates, where xays stands for x
predators y preys respectively.

SMAC Fork SMAC [27] is a widely used MARL benchmark that
emphasizes coordinated micromanagement. Unlike standard maps
emphasizing focus-fire and retreating, we use the custom Fork map
[8]. This map features two symmetrical points at the Up and Down
sides, guarded by several enemies. Among 8 agents, 4 are trained
ad hoc agents. Teammates must coordinate their attacks on the same
point to eliminate enemies and earn high rewards. Otherwise, neither
point will achieve a firepower advantage, resulting in failures.

5.2 Offline Datasets

Instead of learning the model through extensive online interactions
with various agents, we only have access to some pre-collected tra-
jectories of unknown teammates in offline setting. Consequently, we
construct a diverse teammate set comprising various behavioral poli-
cies from teammates and divide them for training and evaluation.
Teammate policies are generated using CSP algorithm [8] that in-
tegrates a Soft-Value Diversity (SVD) objective with an alternating
optimization mechanism. This process yields two policy populations,
each comprising four distinct policies. Next, we sample correspond-
ing models at three different checkpoints for each policy, resulting
in a total of 12 distinct policies per population. We randomly select
policies from one population as the training teammate set ΓTrain and
use the remaining policies as the testing teammate set ΓEval. All data
are derived from the training policy set, while testing is conducted
with unseen policies to simulate authentic zero-shot collaboration
settings. Detailed dataset statistics are presented in Table 1.

5.3 Evaluation of Performance

Baselines
We evaluate our method against five baseline approaches, which

consist of three variants of Decision Transformers and two state-
of-the-art online MARL algorithms specifically designed for ad hoc

Table 1: Statistics of collected offline datasets
Environment #Agents #Samples Mean Return Max Return
Level-Based Foraging 2 60000 0.3752 0.5000

Predator Prey

2 60000 18.4973 40
3 120000 22.2138 60
4 120000 51.1635 80
8 120000 89.4050 120

SMAC Fork 8 120000 3.2576 9.0698

Figure 5: Performance comparison across different scenarios with various agent number settings among three environments.
agent learning. For fairness, all methods were tested in online multi-
agent environments with diverse, unknown teammates. The perfor-
mance trends in Figure 5 illustrate how each method evolves during
training. Each data point corresponds to the average online interac-
tion outcomes of the several trained models with unknown team-
mate policies π−i ∼ ΓEval, plotted against its respective training
timestep.

• Decision Transformer (DT) [6]. We train a vanilla decision
transformer for learning to cooperate with various policies by re-
garding the ad hoc learning as a normal offline single-agent learn-
ing task. The decision transformer has the same structure of the
causal transformer we used in DiTAC but only eliminated the
prompt structure, and is trained with the same process as the Di-
TAC but with only τ input, which is designed to help ablate the ef-
fect of prompt.

• Prompt Decision Transformer (Prompt-DT) [34]. We adopt
the Prompt-DT for learning to cooperate with different policies
by regarding each cooperation as a single task. The Prompt-DT
is trained with the input as same as the DiTAC that combines the
τ prompt and τ input. This helps to discriminate the effect between ad-
ditional information of prompt history and the discrete teamwork
abstraction learning architecture.

• DiTAC-based Behavior Cloning (DiTAC-BC).We omit Di-
TAC’s reward-to-go tokens required in both τ prompt and τ input. We
keep exactly the same model architecture of DiTAC for DiTAC-
BC and mask all reward information in both training and evalua-
tion stage to investigate the effect of reward-to-go tokens.

• LIAM-Off; ODITS-Off. Both Local Information Agent Model

[22] and Online aDaptation via Inferred Teamwork Situations
[12] learn a policy behavior representation during the online inter-
actions with teammates originally, to ensure fairness, we conduct
these two algorithms in an offline manner with our offline datasets.
The offline variants use pre-collected data for training (no online
interactions), while original LIAM and ODITS train via online
interactions with some predefined teammates. These are helping
to show the challenges exists in adapting the online algorithm to
offline datasets.

We train our DiTAC model with prompt length L⋆ = 1 and tra-
jectory length L = 10 for all experiments presented in Figure5. To
be consistent for two variants, we train DT with trajectories length
L = 10 and train Prompt-DT with the same setting as DiTAC.

5.3.1 Performance comparison in three environments.

The performance results across three environments are presented in
the Figure5. We first observe that our DiTAC and DiTAC-BC mod-
els outperforms all other baselines, which verifies the effectiveness.
In the LBF environment, the LIAM-Off and ODITS-Off obviously
barely cooperate with the teammate to acquire even one food, which
shows that current state-of-the-art online algorithms are infeasible to
address the challenges when the online interaction is disabled during
the training process. While comparing with the results in PP, we can
see the ODITS-Off presents the possible trend that adapting to coop-
erate with unseen teammates, which indicates that it indeed extract-
ing teamwork situation knowledge from the offline dataset slightly. In
contrast, the LIAM-Off shows slightly effectiveness in SMAC Fork.

Table 2: Ablation: The effect of prompt length on DiTAC’s generalization ability.
L* LBF PP(2a4s) PP(3a6s) PP(4a8s) PP(8a12s) SMAC Fork
1 0.2438±0.0013 7.7972±0.7909 29.9510±0.1569 46.2561±0.8192 89.1335±0.5027 2.2056±0.3236
2 0.2310±0.0088 8.4026±0.1478 30.2377±0.2152 46.5892±0.6845 89.5149±0.5001 2.1333±0.0967
3 0.2490±0.0013 8.0023±0.4076 29.9599±0.1593 46.9495±0.5146 88.8402±0.3165 2.2101±0.7325
5 0.2345±0.0059 6.4059±0.4857 30.1508±0.3754 46.3828±0.3244 88.8307±0.5317 2.1908±0.2236

Table 3: Ablation: The effect of discrete codebook size on DiTAC’s generalization ability.
K LBF PP(2a4s) PP(3a6s) PP(4a8s) PP(8a12s) SMAC Fork
32 0.2406±0.0205 7.3804±0.5756 29.6338±1.0405 46.9982±0.6767 89.0073±0.3190 2.2035±0.3948
64 0.2438±0.0013 7.7972±0.7909 29.9510±0.1569 46.2561±0.8192 89.1335±0.5027 2.2056±0.3236

128 0.2439±0.0087 7.3911±0.9622 30.0234±0.3989 45.9995±0.6381 90.1249±0.2082 2.1197±0.0962
256 0.2487±0.0015 8.3958±0.3837 30.2096±0.4271 46.9024±0.4976 89.6843±0.4828 2.1172±0.1255

DT presents similar performance among all baselines in three envi-
ronments, indicating its ability to learn basic behavior patterns from
offline trajectories. However, it is blind to cooperating with vari-
ous types of teammates. Additionally, we observe that Prompt-DT
demonstrates similar performance to our method in the LBF environ-
ment but loses its effectiveness in more complex environments such
as PP and SMAC Fork. In fact, it performs even worse than vanilla
DT, possibly because the prompt structure in Prompt-DT fails to ex-
tract effective team-level strategies information as the environments
become more complex. This finding validates that specific design for
capturing teamwork situation abstraction from trajectory segments
τ prompt is required. Furthermore, we hypothesize that the masked bi-
directional transformer structure enforces the prompt to model team-
mate behavior policy types based on partial information from ad hoc
agents. Hence, while providing prompt information directly can of-
fer some benefits, if we cannot extract effective information from
the prompt trajectory, it may even negatively impact the model. The
masked prompt structure, combined with the learned codebook that
grounds the learning of teammate abstractions in the space of (o, a),
further enhances the generalization ability of our model.

5.3.2 Performance analysis as agent count increases.

We further extend the experiments to include settings with an in-
creasing number of agents in the Predator-Prey environment and
reported the results in the right part of Figure5. We further ana-
lyze how prompt trajectory segment length τ prompt impacts the qual-
ity of learned teamwork situation abstractions. For instance, longer
segments may capture phased strategies (e.g., ’scout-then-attack’),
while shorter segments focus on atomic coordination patterns. Our
DiTAC model achieves superior results in episode return across vary-
ing numbers of teammates, verifying the effectiveness and general-
ization ability of learned temwork abstraction. DiTAC-BC performs
similarly to DiTAC in most scenarios and even better than DiTAC
in the PP setting with 8 agents. Similar to the findings in [34], this
improvement may be attributed to the high quality of historical tra-
jectories collected with the training policies in PP(8a12s), as shown
in Table 1, demonstrating that high-quality cooperation trajectories
provide more collaboration-specific information than the reward-to-
go tokens stored in the historical context. LIAM-Off and ODITS-Off
continue to present low performance, with these algorithms show-
ing higher variability compared to other baselines. This should be
explained by the more serious out-of-distribution issue that arises
when applying online algorithms within an offline training setting.
DT is still lower than our model although it outperforms other base-
lines. However, Prompt-DT exhibits a continuous decline in perfor-
mance as the number of agents increases. This indicates the impor-
tance of learning effective teamwork abstractions, and that invalid
prompt teamwork abstraction may lead to serious miscoordination.
In the scenario where 4 out of 8 agents are controlled as ad hoc agents

in the SMAC Fork environment, our models DiTAC and DiTAC con-
tinue to present slight advantages compared to other baselines. This
demonstrates the effectiveness of our models even as the number of
ad hoc agents increases. We also note that the performance varia-
tion of all baselines is more pronounced than in other environments,
which may be attributed to the low quality of the collected offline
trajectories.

5.4 Ablation Study

Prompt Length We conduct experiments over all scenarios men-
tioned before with different prompt length. The default setting of our
DiTAC model is L⋆ = 1. As shown in the Table. 2, DiTAC achieves
similar high performances with different prompt lengths, even when
the prompt only contains one timesteps history information. Increas-
ing the prompt length L⋆ does not apparently increase the perfor-
mance. We conjecture that longer prompts of non-expert trajectories
bring noise from irrelevant information. Shorter prompts, by con-
trast, reduce such interference and avoid input length mismatches,
enabling better adaptability.

Discrete Codebook Size We train our DiTAC model with varying
codebook sizes to evaluate the impact of the VQ-VAE training. The
results are summarized in Table. 3, revealing that competitive perfor-
mance can be achieved even with a smaller number of codes. This
can be explained with finite teamwork abstractions required in cur-
rent experiments environments. Therefore, once the codebook size is
sufficiently large to contain teamwork abstractions, the models per-
form similarly. Overall, there are slight benefits associated with in-
creasing the codebook size. We adopt K = 64 in our model training
to balance computation and performance.

6 Conclusions and Limitations

In this work, we explored extracting teammate abstraction with a
VQ-VAE codebook and leveraged it to train ad hoc agent for col-
laborating with previously unknown teammates in multi-agent envi-
ronments. Experimental results show that our DiTAC model signifi-
cantly outperforms various baselines and its variants in widely used
ad hoc teamwork tasks. We also showed that DiTAC is robust to the
prompt length and varying codebook size.

Our experiments demonstrate that teamwork situation abstrac-
tions derived from trajectory segments generalize effectively to small
teams. As team size increases, the diversity of collaborative strategies
within segments grows, necessitating larger codebooks to capture
fine-grained patterns. Furthermore, the quality and diversity of pre-
collected historical interaction trajectories involving unknown team-
mates significantly impact overall performance. In future research,
we aim to investigate these issues clearly.

Acknowledgements

The work described in this paper was supported in part by the Re-
search Grants Council of the Hong Kong Special Administrative Re-
gion, China, under Project CUHK 14200824; and by the Hong Kong
Innovation and Technology Fund, under Project MHP/092/22. Addi-
tional support was provided by Guangdong Basic and Applied Basic
Research Foundation (2025A1515010247) and the Fundamental Re-
search Funds for the Central Universities (2024ZYGXZR069).

References
[1] S. Barrett and P. Stone. Cooperating with unknown teammates in com-

plex domains: A robot soccer case study of ad hoc teamwork. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence, volume 29,
2015.

[2] M. Bowling and P. McCracken. Coordination and adaptation in im-
promptu teams. In AAAI, volume 5, pages 53–58, 2005.

[3] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, et al. Language mod-
els are few-shot learners. Advances in neural information processing
systems, 33:1877–1901, 2020.

[4] W. Böhmer, V. Kurin, and S. Whiteson. Deep coordination graphs.
arXiv preprint arXiv:1910.00091, 2019. URL https://arxiv.org/abs/
1910.00091.

[5] D. Charles and M. Black. Dynamic player modeling: A framework for
player-centered digital games. In Proc. of the International Confer-
ence on Computer Games: Artificial Intelligence, Design and Educa-
tion, pages 29–35, 2004.

[6] L. Chen, K. Lu, A. Rajeswaran, K. Lee, A. Grover, M. Laskin,
P. Abbeel, A. Srinivas, and I. Mordatch. Decision transformer:
Reinforcement learning via sequence modeling. arXiv preprint
arXiv:2106.01345, 2021. URL https://arxiv.org/abs/2106.01345.

[7] S. Chen, E. Andrejczuk, Z. Cao, and J. Zhang. Aateam: Achieving the
ad hoc teamwork by employing the attention mechanism. In Proceed-
ings of the AAAI conference on artificial intelligence, volume 34, pages
7095–7102, 2020.

[8] H. Ding, C. Jia, C. Guan, F. Chen, L. Yuan, Z. Zhang, and Y. Yu. Co-
ordination scheme probing for generalizable multi-agent reinforcement
learning. OpenReview, 2023. URL https://openreview.net/forum?id=
PAKkOriJBd. Submitted to ICLR 2023.

[9] A. Drachen, A. Canossa, and G. N. Yannakakis. Player modeling using
self-organization in tomb raider: Underworld. In 2009 IEEE symposium
on computational intelligence and games, pages 1–8. IEEE, 2009.

[10] I. Durugkar, E. Liebman, and P. Stone. Balancing individual prefer-
ences and shared objectives in multiagent reinforcement learning. In-
ternational Joint Conference on Artificial Intelligence, 2020.

[11] S. Fujimoto, D. Meger, and D. Precup. Off-policy deep reinforcement
learning without exploration. In International conference on machine
learning, pages 2052–2062. PMLR, 2019.

[12] P. Gu, M. Zhao, J. Hao, and B. An. Online ad hoc teamwork under
partial observability. In International conference on learning represen-
tations, 2021.

[13] R. Hare and Y. Tang. Player modeling and adaptation methods within
adaptive serious games. IEEE Transactions on Computational Social
Systems, 10(4):1939–1950, 2022.

[14] A. Kumar, A. Zhou, G. Tucker, and S. Levine. Conservative q-learning
for offline reinforcement learning. Advances in Neural Information Pro-
cessing Systems, 33:1179–1191, 2020.

[15] N. Lau, L. S. Lopes, G. Corrente, N. Filipe, and R. Sequeira. Robot
team coordination using dynamic role and positioning assignment and
role based setplays. Mechatronics, 21(2):445–454, 2011.

[16] S. Levine, A. Kumar, G. Tucker, and J. Fu. Offline reinforcement learn-
ing: Tutorial, review, and perspectives on open problems. arXiv preprint
arXiv:2005.01643, 2020.

[17] H. Li, T. Ni, S. Agrawal, F. Jia, S. Raja, Y. Gui, D. Hughes, M. Lewis,
and K. Sycara. Individualized mutual adaptation in human-agent teams.
IEEE Transactions on Human-Machine Systems, 51(6):706–714, 2021.

[18] F. Liu, H. Liu, A. Grover, and P. Abbeel. Masked autoencoding for
scalable and generalizable decision making. Advances in Neural Infor-
mation Processing Systems, 35:12608–12618, 2022.

[19] L. Meng, M. Wen, Y. Yang, C. Le, X. Li, W. Zhang, Y. Wen, H. Zhang,
J. Wang, and B. Xu. Offline pre-trained multi-agent decision trans-
former: One big sequence model tackles all smac tasks. arXiv preprint
arXiv:2112.02845, 2021.

[20] R. Mirsky, W. Macke, A. Wang, H. Yedidsion, and P. Stone. A penny
for your thoughts: The value of communication in ad hoc teamwork.
International Joint Conference on Artificial Intelligence, 2020.

[21] F. A. Oliehoek, M. T. Spaan, N. Vlassis, and S. Whiteson. Exploiting
locality of interaction in factored dec-pomdps. In Int. Joint Conf. on
Autonomous Agents and Multi-Agent Systems, pages 517–524, 2008.

[22] G. Papoudakis, F. Christianos, and S. V. Albrecht. Agent modelling un-
der partial observability for deep reinforcement learning. arXiv preprint
arXiv:2006.09447, 2020. URL https://arxiv.org/abs/2006.09447.

[23] G. Papoudakis, F. Christianos, L. Schäfer, and S. V. Albrecht. Bench-
marking multi-agent deep reinforcement learning algorithms in coop-
erative tasks. arXiv preprint arXiv:2006.07869, 2020. URL https:
//arxiv.org/abs/2006.07869.

[24] A. Rahman, E. Fosong, I. Carlucho, and S. V. Albrecht. Generating
teammates for training robust ad hoc teamwork agents via best-response
diversity. Transactions on Machine Learning Research, 2023.

[25] A. Ramesh, M. Pavlov, G. Goh, S. Gray, C. Voss, A. Radford, M. Chen,
and I. Sutskever. Zero-shot text-to-image generation. In International
conference on machine learning, pages 8821–8831. Pmlr, 2021.

[26] M. Rovatsos and M. Wolf. Towards social complexity reduction in
multiagent learning: the adhoc approach. In Proceedings of the 2002
AAAI Spring Symposium on Collaborative Learning Agents, pages 90–
97, 2002.

[27] M. Samvelyan, T. Rashid, C. S. De Witt, G. Farquhar, N. Nardelli, T. G.
Rudner, C.-M. Hung, P. H. Torr, J. Foerster, and S. Whiteson. The star-
craft multi-agent challenge. arXiv preprint arXiv:1902.04043, 2019.

[28] R. S. Sutton, D. Precup, and S. Singh. Between mdps and semi-mdps: A
framework for temporal abstraction in reinforcement learning. Artificial
intelligence, 112(1-2):181–211, 1999.

[29] Z. Tang, C. Yu, B. Chen, H. Xu, X. Wang, F. Fang, S. Du, Y. Wang, and
Y. Wu. Discovering diverse multi-agent strategic behavior via reward
randomization. arXiv preprint arXiv:2103.04564, 2021.

[30] A. Van Den Oord, O. Vinyals, et al. Neural discrete representation learn-
ing. Advances in neural information processing systems, 30, 2017.

[31] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, Ł. Kaiser, and I. Polosukhin. Attention is all you need. Ad-
vances in neural information processing systems, 30, 2017.

[32] T. Wang, T. Gupta, A. Mahajan, B. Peng, S. Whiteson, and C. Zhang.
Rode: Learning roles to decompose multi-agent tasks. arXiv preprint
arXiv:2010.01523, 2020.

[33] A. Xie, D. Losey, R. Tolsma, C. Finn, and D. Sadigh. Learning latent
representations to influence multi-agent interaction. In Conference on
robot learning, pages 575–588. PMLR, 2021.

[34] M. Xu, Y. Shen, S. Zhang, Y. Lu, D. Zhao, B. J. Tenenbaum, and C. Gan.
Prompting decision transformer for few-shot policy generalization. In
Thirty-ninth International Conference on Machine Learning, 2022.

[35] G. N. Yannakakis. Game ai revisited. In Proceedings of the 9th confer-
ence on Computing Frontiers, pages 285–292, 2012.

https://arxiv.org/abs/1910.00091
https://arxiv.org/abs/1910.00091
https://arxiv.org/abs/2106.01345
https://openreview.net/forum?id=PAKkOriJBd
https://openreview.net/forum?id=PAKkOriJBd
https://arxiv.org/abs/2006.09447
https://arxiv.org/abs/2006.07869
https://arxiv.org/abs/2006.07869

	Introduction
	Related Works
	Ad Hoc Teamwork and Trajectory-Based Behavior Modeling
	Offline Multi-Agent Reinforcement Learning
	Discrete Representation Learning for Collaboration

	Preliminaries
	Dec-POMDP with an additional teammate set
	Transformer-based Offline RL

	Method
	Overview
	Framework Details and Data Flow
	Learning Teamwork Abstraction
	Algorithms

	Experiments
	Environments
	Offline Datasets
	Evaluation of Performance
	Performance comparison in three environments.
	Performance analysis as agent count increases.

	Ablation Study

	Conclusions and Limitations

