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Abstract
Decision models based on sequence modeling have become preva-
lent in the field of offline reinforcement learning. However, existing
approaches such as Decision Transformer and Trajectory Trans-
former suffer from poor data efficiency. One important reason is
that they fail to extract useful information from potentially high-
dimensional and noisy states. To resolve this issue, we propose
a data-efficient decision sequence modeling method called Data
Efficient Decision Sequence Model (DEDS), which dynamically
identifies and filters out task-irrelevant state features for more com-
pact state representations. Specifically, DEDS employs a state mask
model guided by the bisimulation metric to ensure that only the most
task-relevant state features are preserved for decision-making. Exten-
sive experiments on various environments demonstrate that DEDS
outperforms existing offline RL methods and achieves a significantly
high data efficiency, especially in tasks with high-dimensional and
complex state spaces.
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1 Introduction
In reinforcement learning (RL), state representation is crucial be-
cause it governs how an agent perceives information from the envi-
ronment. By reducing high-dimensional observations to a smaller
set of important features, a good state representation can streamline
policy learning and speed up convergence. In online RL, existing
works focus on creating compact state representations to improve
data efficiency when training in complex environments. Such state
representations allow agents to achieve strong performance with sig-
nificantly fewer samples, which is essential to real-world scenarios
where data collection can be expensive or difficult [19, 28].

However, in offline RL, developing effective state representations
becomes considerably more challenging due to the lack of access
to the environment. First, without the ability to interact with the
environment, agents cannot leverage real-time feedback to refine
their state representations iteratively. Second, the set of features that
are relevant to decision-making may vary at different time steps,
making it hard to accurately capture the dynamic task-relevant infor-
mation. Recent works cast the sequential decision-making problem
as a unified sequence modeling problem. For example, Decision
Transformer [4] and Trajectory Transformer [11] learn decision
policies from offline datasets, which successfully capture the depen-
dencies between states, actions and rewards. While these methods
have shown impressive empirical results, they typically lack explicit
feature selection or effective representation learning. As a result,
they usually exhibit poor data efficiency, particularly in large or
noisy state spaces with a large number of task-irrelevant features.
Therefore, designing more effective state representations remains
critical for offline sequence modeling methods.

In this paper, we propose a Data Efficient Decision Sequence
Model (DEDS) to accelerate the learning process by integrating
a bisimulation-based feature-level state mask model. Specifically,
the implementation of DEDS consists of three steps. First, under
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the offline setting, we learn a transition model and a reward model
from the offline dataset. Second, guided by the bisimulation metric,
we learn a state mask model that ensures any states leading to a
similar reward are closely represented in the latent space, so as to
reduce the effect of task-irrelevant features. Third, since the set of
task-relevant features may change over time, DEDS incorporates
an adaptive masking strategy using the learned state mask model to
decide which state features (i.e., tokens) to reserve.

By integrating the state mask model in sequence modeling, DEDS
substantially enhances data efficiency in offline RL with high-
dimensional and noisy state space. Moreover, the state mask model
dynamically filters out task-irrelevant state features to reduce the
difficulty of policy learning and boost the policy performance. We
conduct extensive experiments on the D4RL [8] and Adroit [18]
benchmarks using various offline RL and sequence modeling base-
lines. Experimental results show that DEDS significantly outper-
forms existing approaches in terms of both data efficiency and policy
performance. Our main contributions are summarized as follows:

• We introduce an adaptive state mask model, which is learned
using offline datasets under the guidance of bisimulation.
The state mask model can effectively filter out task-irrelevant
features for any given state.

• We introduce the framework of DEDS, which integrates the
state mask model with sequence modeling based decision
policies. The state mask model is employed in both train-
ing and inference procedures for learning a compact state
representation at every time step.

• We demonstrate through extensive experiments on MuJoCo
tasks that DEDS significantly outperforms existing offline RL
and sequence modeling approaches in terms of both policy
performance and data efficiency.

2 Related Work
2.1 Data-Efficient Reinforcement Learning
Many approaches have been proposed to enhance data efficiency in
RL. For instance, EfficientZero [26] combines self-supervised learn-
ing (SSL) and data augmentation within a model-based framework
to reduce data complexity in an end-to-end manner. Methods like
CURL [14] and RCRL [16] integrate contrastive learning, aiming to
learn robust representations by distinguishing between state–action
pairs with different rewards. Although these techniques improve
data efficiency, they often rely on auxiliary tasks that can introduce
features unrelated to the primary decision-making objective. Another
avenue for improving data efficiency lies in bisimulation metrics,
which gauge the behavioral similarity of states by comparing their
long-term reward sequences under any action sequence [7, 13]. In
continuous MDPs, Ferns et al. [6] introduced a Monte Carlo algo-
rithm that leverages the Wasserstein distance between empirically
measured transition distributions to approximate the bisimulation
metric. More recently, Castro [3] proposed an on-policy method
tailored to deterministic settings and policy evaluation, focusing on
computing bisimulation metrics without learning explicit representa-
tions. In this paper, we incorporate bisimulation metrics into the state
mask model that selectively removes task-irrelevant state features.
By directly leveraging behavioral similarity, our approach filters

out redundant dimensions and fosters a data-efficient representation,
leading to more effective and robust policies.

2.2 Sequence Modeling for Offline RL
Transformers have recently been used to reformulate offline RL as
a sequence modeling task, enabling the direct prediction of actions
from observation and task specification sequences [4, 11]. Two no-
table examples are the Decision Transformer (DT) [4], which uses
reward-to-go together with state and action sequences to predict the
next action, and the Trajectory Transformer (TT) [11], which dis-
cretizes each dimension of the inputs into tokens for next-action pre-
diction. While these methods have demonstrated promising results,
they rely on raw, high-dimensional states without explicit mech-
anisms to filter out task-irrelevant features, thereby limiting their
data efficiency—particularly in environments where noise obscures
key information. Although recent works propose variations of the
basic transformer-based framework [23–25], the overarching chal-
lenge persists: many sequence-modeling methods rely on raw, high-
dimensional states without a principled way to filter task-irrelevant
features. This shortcoming becomes especially problematic in large
or noisy state spaces, where crucial signals can be obscured. Our ap-
proach tackles this issue by introducing an adaptive masking strategy,
which employs the state mask model to dynamically discard redun-
dant dimensions and thereby improve both data efficiency and policy
performance in offline sequence-based Reinforcement Learning.

2.3 Trajectory Masking
Recent transformer-based RL studies have explored masking tech-
niques to enhance representation learning and improve data effi-
ciency. For example, Masked and Inverse Dynamics Modeling [15]
masks portions of state-action sequences and trains the model to both
reconstruct missing elements and predict inverse dynamics, thereby
encouraging robust feature extraction. RePreM [2] adopts a similar
pretraining approach by masking input sequences to enhance down-
stream RL performance, while Masked Trajectory Models [21] focus
on sequence reconstruction and prediction to improve control and
state representations. Additionally, Mask-based Latent Reconstruc-
tion [27] filters out task-irrelevant information by masking latent
variables within trajectory data, thereby improving decision-making
and task-specific feature extraction. However, these methods typi-
cally mask trajectories in a reconstruction-driven manner, which can
force the model to learn details unrelated to decision-making simply
because they are needed to restore missing parts of the sequence.

3 Preliminaries
3.1 Sequence Modeling for Decision Making
Previous work [4, 11] has explored framing offline RL as a sequential
modeling problem. Specifically, Decision Transformer (DT) [4]
represents trajectories 𝜏 as sequences in the following format:

𝜏 = (𝑅1, 𝑠1, 𝑎1, 𝑅2, 𝑠2, 𝑎2, ..., 𝑅𝑇 , 𝑠𝑇 , 𝑎𝑇 )
where 𝑠 is the state, 𝑎 is the action and 𝑅𝑡 =

∑𝑇
𝑡 ′=𝑡 𝑟𝑡 ′ denotes the

return-to-go, defined as the sum of future rewards starting from
timestep 𝑡 . This trajectory is tokenized and fed into a GPT-based
Transformer architecture [17], which serves as an expressive policy
function approximator 𝜋𝜃 . The model is trained to predict the next



Efficient Decision Sequence Modeling via Feature-Level Masking DAI, NOV 21–24, 2025, London

Replay Buffer

State Mask 
Model

Transition
Model

Transition
Model

0 1 1 0 1

0 0

State Mask 
Model

0 1 1 0 1

0 0

 distance

State Mask 
Model

1 0 ...1 0 ×

Causal Transformer

Figure 1: (a) The framework for training the state mask model. Specifically, the state mask model is designed to generate masks
so that the ℓ1 distance of any two masked states 𝑧𝑖 and 𝑧 𝑗 aligns with the bisimulation metric. During training, a pair of trajectory
data (𝑠𝑖 , 𝑎𝑖 , 𝑟𝑖 ) and (𝑠 𝑗 , 𝑎 𝑗 , 𝑟 𝑗 ) are sampled. Then, the transition probabilities corresponding to (𝑧𝑖 , 𝑎𝑖 ) and (𝑧 𝑗 , 𝑎 𝑗 ) are estimated by the
transition model. The objective function 𝐽 is defined as the mean squared error between the distance in latent space | |𝑧𝑖 , 𝑧 𝑗 | |1 and the
calculated bisimulation metric between the two states. (b) Sequence modeling with the state mask model. The input is the sequences of
states, actions and returns-to-go. The state mask model takes the states as input and generates a mask vector that indicates which
tokens should be masked. Masked tokens are fed into a GPT architecture which predicts the next token autoregressively.

action by maximizing the likelihood of observed actions in the offline
dataset D = {𝜏 (𝑚) }𝑀

𝑚=1 using the following objective:

L𝐷𝑇 = E𝜏∼D [
𝑇∑︁
𝑡=1

−𝑙𝑜𝑔𝜋𝜃 (𝑎𝑡 |𝜏1:𝑡−1, 𝑠𝑡 , 𝑅𝑡 )]

3.2 Bisimulation Metric
Bisimulation describes the behavioral equivalence of the state space.
If 𝑠𝑖 and 𝑠 𝑗 cause the same probability of the accumulated reward for
any actions, then 𝑠𝑖 and 𝑠 𝑗 are bisimilar states. A recursive version
of this concept is that bisimilar states get the same reward at this
timestep and the same transition distribution to the next state.

DEFINITION 1. Bisimulation Relations.[9] Given an MDP M
with state space S, for 𝑠𝑖 , 𝑠 𝑗 ∈ M, define 𝑠𝑖 and 𝑠 𝑗 is equivalent
under Bisimulation Relation 𝐵 if:

R(𝑠𝑖 , 𝑎) = R(𝑠 𝑗 , 𝑎) ∀𝑎 ∈ A (1)

P(𝐺 |𝑠𝑖 , 𝑎) = P(𝐺 |𝑠 𝑗 , 𝑎) ∀𝑎 ∈ A,∀𝐺 ∈ S𝐵 (2)

where S𝐵 is a group of states, S𝐵 is the partition of state under 𝐵,
and P(𝐺 |𝑠, 𝑎) = ∑

𝑠′∈𝐺 P(𝑠′ |𝑠, 𝑎).

DEFINITION 2. Bisimulation Metric. From Theorem 2.6 in [6]:

𝑑 (𝑠𝑖 , 𝑠 𝑗 ) = max
𝑎∈A

(1 − 𝑐) · |R𝑎
𝑠𝑖
− R𝑎

𝑠 𝑗
| + 𝑐 ·𝑊1 (P𝑎

𝑠𝑖
,P𝑎

𝑠 𝑗
;𝑑) . (3)

where 𝑐 is a parameter that ranges from 0 to 1,𝑊1 represents the
Wasserstein distance.

4 Method
Motivation. There are two main challenges to develop effective state
representations under the offline setting: (1) The inability to interact
with the environment prevents iterative refinement of state represen-
tations; (2) The task-relevant features may change over time, thus it
is hard to accurately identify them in the offline setting. Fortunately,
we note that the bisimulation metric can more effectively evaluate
the distance between states from the decision making perspective.
Existing works have introduced the bisimulation metric to online

RL [29]. However, whether the metric is effective in offline RL,
particularly in the context of sequence modeling, remains largely
unexplored. This motivates us to learn an adaptive mask model
using the bisimulation metric. By doing so, we aim to endow the
agent with the ability to selectively attend to relevant parts of the
state, mimicking the way humans filter out distractions and focus on
salient information when making decisions.
Overview. Overall, DEDS consists of two key components as illus-
trated in Figure 1. The first component is the state mask model that
is learned from offline data under the guidance of a bisimulation
metric. The second component is a feature-level sequence model
that integrates the state mask model. Unlike Decision Transformers
[4] which treat each state as a token, DEDS treats each feature of
state as a token, thus allowing feature-level masking. This is similar
to the tokenization procedure in Trajectory Transformers [11]. Note
that our state mask model can be combined with any variants of
sequence modeling methods as long as the state spaces are consist
of multiple features.

4.1 State Mask Model
To identify task-irrelevant features in offline sequence modeling, we
propose a state mask model to generate practical state masks. A state
mask, denoted as 𝐼 ∈ I, is a binary vector of the same size as the
state space S. The number of ones in the mask 𝐼 is denoted by |𝐼 |,
while the number of zeros is represented by |1 − 𝐼 |. 𝑓𝜙 (𝑠𝑡 ) denotes
the state mask model parameterized by 𝜙 , where 𝐼𝑡 ∼ 𝑓𝜙 (𝑠𝑡 ). We
employ 𝜋𝜃 (𝑎𝑡 |𝑠𝑡 ) to represent the original policy and 𝜋̃𝜃,𝜙 (𝑎𝑡 |𝑠𝑡 ) to
represent the composite policy with mask. Here, 𝑠𝑡 ∈ 𝑆𝑡 , where 𝑆𝑡
signifies the masked state space at timestep 𝑡 .

The primary objective of the state mask is to output a binary
vector that determines which feature tokens should be masked, so
that the agent can focus on task-relevant information. Traditional
binary vector generation methods, such as hand-crafted thresholding
and classification model based thresholding, can hardly be trained
in an end-to-end manner due to the discontinuous gradient flow.
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To overcome this limitation, we employ the Gumbel-Softmax trick
[10], which approximates discrete binary outputs while preserving
differentiability. By adding Gumbel noise to each component of
the probability vector and applying a softmax function, Gumbel-
Softmax provides a smooth approximation of binary values. This
allows the gradient to propagate through the state mask model, facil-
itating the learning of state masks and enhancing the data efficiency
in high-dimensional state spaces. Formally, the mask is generated:

𝐼𝑡 = Gumbel[𝑓𝜙 (𝑠1
𝑡 , ..., 𝑠

𝑁
𝑡 )] (4)

where 𝑓 (·) is the state mask model that transforms an N-dimensional
state to an N-dimensional vector of real numbers.

4.2 Learning the State Mask Model
We train the state mask model using a bisimulation metric to ensure
its ability to identify and mask task-irrelevant state dimensions.
When the model effectively filters out task-irrelevant dimensions, the
resulting masked states should closely align with decision-making
requirements. This alignment ensures that the distance between
any two masked states satisfies the bisimulation metric defined in
Equation 3. To guide the model towards this desired property, we
define the distance between masked states as 𝑑 (𝑠𝑖 , 𝑠 𝑗 ) := | |𝑧𝑖 , 𝑧 𝑗 | |,
where 𝑧 = 𝐼 · 𝑠, represents masked states. During training, we sample
batches of state pairs and minimize the mean squared error between
the bisimulation metric and the ℓ1 distance of the masked states. The
objective is defined as:

𝐽 (𝜙) = (𝛽 | |𝑧𝑖 , 𝑧 𝑗 | |1 − |𝑟𝑖 − 𝑟 𝑗 |
− 𝛾𝑊2 (P̂ (·|𝑧𝑖 , 𝑎𝑖 ), P̂ (·|𝑧 𝑗 , 𝑎 𝑗 )))2

+ 𝛼 |1 − 𝐼 |
𝑑𝑖𝑚(𝐼 )

(5)

where 𝑟 are rewards, and 𝑧 denotes 𝑧 with stop gradients. |1−𝐼 |
𝑑𝑖𝑚 (𝐼 )

acts as a regularization term to prevent excessive sparsity in the
mask 𝐼 by penalizing excessive zeros. This ensures that the mask
captures sufficient information to support effective decision-making
while maintaining computational efficiency. Here, Equation 5 incor-
porates a probabilistic dynamics model P̂ which outputs a Gaussian
distribution. Consequently, we employ the 2-Wasserstein metric
𝑊2 in Equation 5, following [29], rather than the 1-Wasserstein
distance defined in Equation 3. This distance is computed as
𝑊2 (N (𝜇𝑖 , Σ𝑖 ),N(𝜇 𝑗 , Σ 𝑗 ))2 = | |𝜇𝑖 − 𝜇 𝑗 | |22 + ||Σ1/2

𝑖
− Σ

1/2
𝑗

| |2F where
| | · | |F is the Frobenius norm. For all other distances we continue
using the ℓ1 norm. The training of the state mask model is illustrated
in Algorithm 1.

4.3 Integrating the State Mask Model with
Sequence Modeling

Following prior work [4, 11], we reformulate the offline reinforce-
ment learning problem as a sequence modeling task, where the goal
is to predict the probability of the next token 𝑥𝑖 conditioned on
all previously observed tokens, 𝑃𝜃 (𝑥𝑖 |𝑥<𝑖 ). We use a Transformer
decoder architecture based on GPT [17] as our backbone, taking
advantage of its capacity to capture long-range dependencies in se-
quential data. To obtain more granular insights, we decompose each

Algorithm 1 State Mask Model Learning
Data:Offline Dataset Data D and number of iterations 𝑇 .

Result: State Mask Model
1: for 𝑡 = 0 to 𝑇 do
2: Sample data (𝑠𝑖 , 𝑎𝑖 , 𝑟𝑖 ), (𝑠 𝑗 , 𝑎 𝑗 , 𝑟 𝑗 ) ∼ D
3: Compute state mask: 𝐼𝑖 = 𝑓𝜙 (𝑠𝑖 ), 𝐼 𝑗 = 𝑓𝜙 (𝑠 𝑗 )
4: Compute masked state: 𝑧𝑖 = 𝐼𝑖 · 𝑠𝑖 , 𝑧 𝑗 = 𝐼 𝑗 · 𝑠 𝑗
5: Estimate the transition distributions:P̂ (·|𝑧𝑖 , 𝑎𝑖 )
6: Train state mask model with loss 𝐽 (𝜙) (Equation 5)
7: Train dynamics: 𝐽 (P̂, 𝜙) = (P̂ (·|𝑧𝑖 , 𝑎𝑖 ) − 𝑧′)2

8: end for

state and action into its individual dimensions. The resulting input
sequences have the form:

𝜏 = (..., 𝑠𝑡1, 𝑠
𝑡
2, ..., 𝑠

𝑡
𝑛, 𝑎

𝑡
1, 𝑎

𝑡
2, ...𝑎

𝑡
𝑚, 𝑅

𝑡 , ...)
where 𝑡 represents a timestep, 𝑛 and 𝑚 are the dimensions of the
state and action spaces, 𝑅𝑡 =

∑𝑇
𝑡 ′=𝑡 𝑟𝑡 ′ denotes the agent’s target

return for the remaining trajectory.
For continuous states and actions, we adopt a quantile-based dis-

cretization method [11], in which each dimension is split into𝑉 bins,
each representing an equal probability mass from the empirical data
distribution. This ensures that every token corresponds to one of
the 𝑉 quantiles, capturing a balanced range of values observed in
the dataset. While this discretization improves the model’s ability
to handle complex dynamics, it also produces a larger token set,
potentially hindering data efficiency in high-dimensional tasks. To
mitigate this issue, we employ a state mask mechanism that identi-
fies and discards task-irrelevant tokens, allowing the Transformer
to focus on decision-critical information. Concretely, dimensions
that contribute minimally to action selection are masked out, thereby
reducing both noise and computational overhead. This targeted fil-
tering not only enhances the data efficiency of our approach but
also enables more robust learning in scenarios where task-irrelevant
or redundant features might otherwise dominate. An overview of
DEDS is shown in Figure 1.

During training, we sample mini-batches of sequences with a
length 𝐾 from the offline dataset, resulting in (𝑚 + 𝑛 + 1) ∗ 𝐾 to-
kens. Denoting the parameters of the transformer as 𝜃 and including
conditional probabilities as 𝑃𝜃 , the following objective function
maximized during training is:

L(𝜏) =
𝑇∑︁
𝑡=1

(
𝑛∑︁
𝑖=1

𝐼 𝑖𝑡 · 𝑙𝑜𝑔𝑃𝜃 (𝑠𝑡𝑖 |s
<𝑡
𝑖 , 𝜏<𝑡 )

+
𝑚∑︁
𝑗=1

𝑊𝑎 · 𝑙𝑜𝑔𝑃𝜃 (𝑎
𝑗
𝑡 |a

< 𝑗
𝑡 , s𝑡 , 𝜏<𝑡 )

+𝑊𝑟 · 𝑙𝑜𝑔𝑃𝜃 (𝑟𝑡 |a𝑡 , s𝑡 , 𝜏<𝑡 ))

(6)

where 𝜏<𝑡 denotes the trajectory from timesteps 0 through 𝑡 − 1, s𝑡
<𝑖

denotes the first 𝑖 − 1 dimensions of the state at timestep 𝑡 , and simi-
larly for a𝑡

< 𝑗
. We assign different weights to different components

of the loss function. The state weight is represented by 𝐼 𝑖𝑡 , which
is the mask corresponding to the state dimension 𝑠𝑖𝑡 . Only when
𝐼 𝑖𝑡 = 1 does the corresponding state dimension contribute to the loss.
Additionally, we set the action weight𝑊𝑎 = 5 and the reward weigh
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𝑊𝑟 = 1. We optimize the parameters 𝜃 using the Adam optimizer[5]
with a learning rate of 2.5 × 10−4.

5 Experiments
Our experiments aim to answer the following key questions:

• (RQ1:) How does DEDS perform compared to existing offline
RL and sequence modeling methods?

• (RQ2:) How effective is the state mask model in filtering out
task-irrelevant features?

• (RQ3:) How does DEDS improve the data efficiency during
the training process?

5.1 Baselines
We use six different offline reinforcement learning methods as base-
lines, each represents a different type of approach. The descriptions
are as follows:

• Behavior Cloning (BC): BC is a supervised learning ap-
proach where a policy is trained to directly mimic the actions
observed in the dataset.

• Model-Based Offline Planning (MBOP) [1]: MBOP builds
an environment model from offline data, generating future
trajectories to select actions by simulating long-term returns,
improving policy performance without interaction.

• Behavior-Regularized Actor-Critic (BRAC) [22]: BRAC
mitigates distributional shift in offline RL by adding a reg-
ularization term that keeps the learned policy close to the
behavior in the offline dataset.

• Conservative Q-Learning (CQL) [12]: CQL prevents over-
estimation of out-of-distribution actions by penalizing Q-
values of actions not present in the dataset.

• Decision Transformer (DT) [4]: DT models reinforcement
learning as a sequence prediction task by taking states, ac-
tions, and rewards-to-go as input sequences, leveraging a
Transformer architecture to predict future actions.

• Trajectory Transformer (TT) [11]: TT by treating each
dimension of states, actions, and rewards as an individual
token.

5.2 Benchmark Datasets
In this section, we draw upon a variety of continuous control tasks
and datasets that leverage the MuJoCo simulator[20]. The different
datasets are described below.

• D4RL [8]: D4RL is a popular offline RL benchmark con-
sisting of several environments and datasets. Following a
number of prior work, we focus on the locomotion subset:
HalfCheetah, Hopper, and Walker2D.

• Adroit [18]: Adroit is a collection of dexterous manipulation
tasks with a simulated five-fingered robotic hand.

5.3 Performance on Datasets (RQ1)
Our results on the D4RL datasets are shown in Table 1, with scores
normalized so that a value of 100 corresponds to an expert pol-
icy, following the methodology in [8]. As illustrated, our method
achieves strong performance across all tasks, consistently surpassing
other offline reinforcement learning baselines, including Sequence

Modeling approaches such as Decision Transformer (DT) and Trajec-
tory Transformer (TT). This consistent improvement across different
datasets indicates that DEDS is not only competitive in specific cases
but also maintains a reliable advantage in a broad range of offline
RL scenarios. Although DT and TT also utilize Sequence Modeling
to capture long-term dependencies, our method attains the highest
average score. This suggests that simply modeling sequential depen-
dencies is insufficient when the input state contains a high proportion
of irrelevant or redundant information. This improvement can be
attributed to our approach’s effective masking of task-irrelevant state
features, allowing the model to focus on more useful information
and perform better in complex and high-dimensional environments.

BC MBOP BRAC CQL DT TT DEDS
0

20

40

60

80

Av
er

ag
e 

N
or

m
al

iz
ed

 R
et

ur
n

Behavior Cloning Trajectory Optimization Temporal Difference Sequence Modeling

Figure 2: Average return on D4RL datasets. This plot shows the
average per-algorithm performance in Table 1, with bars colored
according to a crude algorithm categorization.
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Figure 3: Dataset efficiency on Adroit datasets. We train DEDS,
DT and TT on the Adroit Door and Pen tasks across a range
of dataset sizes, measured by the percent of the original expert
dataset. We observe that DEDS consistently outperforms DT
and TT in the low-data regime, demonstrating the advantage of
adaptive masking.

Results for Adroit tasks are presented in Table 2. Across both
the Expert and Medium-Replay datasets for the Pen and Door tasks,
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Dataset Environment BC MBOP BRAC CQL DT TT DEDS

Medium-Expert HalfCheetah 59.9 105.9 41.9 91.6 86.8 95.0 83.5
Medium-Expert Hopper 79.6 55.1 0.9 105.4 107.6 110.0 113.9
Medium-Expert Walker2d 36.6 70.2 81.6 108.8 108.1 101.9 109.0

Medium HalfCheetah 43.1 44.6 46.3 44.0 42.6 46.9 46.1
Medium Hopper 63.9 48.8 31.3 58.5 67.6 61.1 69.2
Medium Walker2d 77.3 41.0 81.1 72.5 74.0 79.0 82.8

Medium-Replay HalfCheetah 4.3 42.3 47.7 45.5 36.6 41.9 42.1
Medium-Replay Hopper 27.6 12.4 0.6 95.0 82.7 91.5 93.4
Medium-Replay Walker2d 36.9 9.7 0.9 77.2 66.6 82.6 83.4

Average 47.7 47.8 36.9 77.6 74.7 78.9 80.4
Table 1: Performance on D4RL datasets. We report the result for three random seeds.

DEDS consistently outperforms Decision Transformer (DT) and Tra-
jectory Transformer (TT). This performance advantage is particularly
evident in the high-dimensional Adroit environments, which require
agents to handle complex state and action spaces effectively. Unlike
simpler locomotion tasks, Adroit environments involve fine-grained
manipulation with a five-fingered robotic hand, leading to greater
sensitivity to irrelevant or redundant input signals. This makes rep-
resentation learning especially difficult, as spurious features can
easily degrade performance if not properly filtered. By filtering out
task-irrelevant features, DEDS enables more focused and efficient
policy learning. The agent is better equipped to learn stable and high-
quality policies, even when trained on noisy or partially suboptimal
offline trajectories.

Dataset Environment DT TT DEDS

Expert Pen 115.0 117.2 120.3
Expert Door 104.7 102.8 106.0

Medium-Replay Pen 89.7 90.4 93.8
Medium-Replay Door 71.6 73.6 75.1

Average 95.3 96 98.8

Table 2: Performance on Adroit datasets. This table presents a
comparison of DT, TT, and DEDS across Expert and Medium-
Replay datasets for Pen and Door tasks, with average perfor-
mance reported over three random seeds.

5.4 Mask Rate (RQ2)
To assess the efficiency of the state mask model, we compute the
mask rate across complete episodes generated by policies trained
on the D4RL datasets. The mask rate is defined as |1 − 𝐼 |/𝑑𝑖𝑚(𝐼 ),
where 𝑑𝑖𝑚(𝐼 ) represents the dimensionality of the mask vector, and
1− 𝐼 denotes the count of masked dimensions in the state space. The
data is collected from three independent random seeds to account

for variability in the results. The mean mask rate, representing the
average proportion of task-irrelevant state features removed by the
state mask model, is computed and reported for each environment in
Table 3. This metric provides a quantitative measure of the model’s
ability to filter out non-essential features, offering insight into its
capacity to enhance the efficiency of the RL process, particularly in
environments with high-dimensional state spaces.

The results indicate that the state mask model significantly im-
proves data efficiency by effectively filtering out task-irrelevant state
features, reserving approximately 80% of the state features and
achieving a data efficiency improvement of around 20%. Addition-
ally, we observed a correlation between mask rate and dataset quality,
with higher mask rates in Medium-Expert datasets and lower rates
in Medium and Medium-Replay datasets. This pattern likely arises
because high-quality datasets, such as Medium-Expert, provide clear
and consistent decision-making signals, whereas other datasets in-
clude random or partially trained behaviors, making it more difficult
to isolate task-relevant features.

To analyze how the mask rate changes over time, we compute
the mean mask rate at 100-step intervals, revealing consistent trends
across datasets, the results are shown in Fig 4. A strong correlation
emerges between dataset quality and mask rate: Medium-Expert
datasets display the highest rates, reflecting the model’s ability to
filter out task-irrelevant features when decision-making signals are
clear, whereas Medium and Medium-Replay datasets exhibit lower
rates due to noise from suboptimal or exploratory policies. Notably,
the mask rate remains relatively stable in Medium-Expert settings,
indicating their consistent structure, while Medium and Medium-
Replay show more fluctuation—especially early in each episode.

To visually illustrate the effectiveness of our approach in reducing
state features while preserving interpretability, we generated visual-
izations of the mask rates for each state dimension across different
environments, as shown in Figure 5.
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Figure 4: Mask rate during episode. This figure illustrates how the mask rate changes over the course of an episode, calculated at
100-step intervals for three environments: Hopper, HalfCheetah, and Walker2d.

Dateset Environment Mask Rate(%)

Medium-Expert HalfCheetah 21.4
Medium-Expert Hopper 19.0
Medium-Expert Walker2d 20.5

Medium HalfCheetah 17.2
Medium Hopper 14.9
Medium Walker2d 10.8

Medium-Replay HalfCheetah 12.5
Medium-Replay Hopper 9.5
Medium-Replay Walker2d 6.2

Table 3: Mask rate on D4RL datasets. This table shows the
mask rate, which indicates the percentage of task-irrelevant
state dimensions filtered out by the state mask model, for various
environments and datasets within the D4RL benchmark.
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Figure 5: Mask rate for each state dimension. This figure shows
the state dimension mask rates for three environments: Hopper
(top), HalfCheetah (middle), and Walker2d (bottom). Darker
colors represent higher mask rates.

5.5 Data Efficiency (RQ3)
For these experiments, we use the Expert subset of our trajectory
data and evaluate DEDS, Decision Transformer (DT), and Trajectory
Transformer (TT) on the Door and Pen tasks, with dataset sizes
ranging from 0.5% to 95% of the original expert dataset. As shown in
Figure 3, all methods improve with more data, but DEDS maintains

a clear advantage in the low-data regime. Its masking mechanism
identifies and focuses on task-relevant features, enabling robust
policy learning even with limited samples. In contrast, DT and TT,
relying on raw high-dimensional inputs without filtering, suffer
significant performance declines in low-data settings.

Notably, DEDS also reserves a performance edge at higher data
proportions, thereby reflecting the continued benefits of its adaptive
masking strategy. Moreover, although the performance gap gradually
narrows as more data is provided, DEDS’s ability to dynamically
focus on decision-critical information still allows it to better utilize
the dataset and effectively avoid distractions from task-irrelevant or
redundant features. Overall, this adaptability becomes particularly
important in high-dimensional state spaces, where noisy inputs can
otherwise dominate and significantly reduce learning efficiency.

6 Conclusions
In this work, we propose the Data Efficient Decision Sequence
Model (DEDS) for offline RL. By integrating a state mask model
guided by the bisimulation metric, DEDS dynamically filters out
noisy or task-irrelevant features, enabling effective state representa-
tions for decision-making. Through experiments on MuJoCo tasks,
we demonstrate that DEDS consistently outperforms existing ap-
proaches and achieves superior data efficiency. During our experi-
ments, we found that the efficiency of DEDS decreases when facing
high-dimensional action spaces, where an action might be repre-
sented by hundreds of tokens. We plan to address this issue more
thoroughly in our future work.

Looking ahead, our study suggests that feature-level masking
offers a promising path to improve data efficiency in sequence-based
decision models. Extending DEDS to more complex benchmarks or
real-world applications, such as robotic control, could yield valuable
insights into its generalization and practical utility. Furthermore,
integrating our approach with recent transformer advances may
further boost both efficiency and generalization, positioning DEDS
as a flexible framework for diverse sequential decision-making tasks.
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